UNIDEX 16
PROGRAMMING
class EEE

CHAPTER 3: THE EDIT MODE

Unidex 16 has a powerful editor which allows you to edit your
programs with ease.

The edit mode offers two ways of editing a program - Screen
Editing and Command Editing.

1. SCREEN EDITING

Screen editing allows you to place the cursor anywhere in the file
(general display area) and change, add or delete single characters,
thereby directly altering the text. This occurs when the [new-line] or
[revise] mode is activated.

2. COMMAND EDITING

Command editing allows you to change many blocks of program
via the soft key commands.

NOTE: The cursor (_) will be in the text (general display area) of the CRT when
the edit mode's [new-line] or [revise] function Is activated. Otherwise
the cursor will be in the Command Entry Area only.

The block pointer (*) will be in the text (general display area) of the
CRT, highlighting the current program block.

During [revise] or [new-line], both the cursor and the block pointer are
in the same block of text. If, during [revise], when other edit functions
(such as [find] or [copy]) are activated, the cursor wilt jump back to
the line that the block pointer occuples as soon as the soft key edit
function is executed.

CHAPTER 3: THE EDIT MODE

When the [edit] soft key is selected, the following soft key
choices will appear:

[<FILE> new last-edit last-run digitize

A. <FILE>

Pressing any softkey enclosed by < > will not cause any action
to occur. It is only there to indicate that some action is required on
your part. For example, <FILE > indicates that a file name may now
be entered. Just type in the file name and then press soft key [.PP),
[.CM] or [.TO]. (The [.PP}, {.CM] and [.TO] commands indicate what
sort of program (parts program, command file or tool file) is about to
be edited. This will be described in section 3-3, Program Selection.)

If you are about to enter a new program, press the soft key [new]
before entering the file name. You will see:

{ <FILE> digitize

As you enter the file name you will see:

| .PP .CM .JO

Select one and press <ENTER >. You will see:

i new-ine revise find delete end -—-ETC--

[New-line] will be highlighted if you are entering a new file.

B. LAST-EDIT

If the file you wish to revise is one that is the most recently edited
file, the soft key selection [last-edit] and < ENTER > allows you to
bring it up on the screen immediately for further editing.

CHAPTER 3: THE EDIT MODE

C. LAST-RUN

If the file you wish to revise is one that is the most recently executed
file, the soft key selection [last-run] and < ENTER > allows you to
bring it up on the screen immediately for editing purposes.

D. DIGITIZE

Digitizing enables you to move the axes from point to point using
the joystick, and enters the values into a parts program.

If you have the joystick option, press the [digitize] soft key to see:

I inc.mode abs.mode !

Select [inc.mode] to enter data in the incremental mode, where
cach new point is referenced to the last point, or select [abs.mode] to
enter data in the absolute mode, where each new point is referenced
to the home position.

Once [inc.mode] or [abs.mode] is selected, you will see:

| <FILE.PP> ' I

This indicates that you may now enter the name of the file which
will contain your digitizing information.

For more information on the joystick option, refer to chapter 13,
Unidex 16 Options.

The next section (section 3-1), will explain entering a new file. Sec-
tion 3-2 will discuss revising an existing file.

CHAPTER 3: THE EDIT MODE

B. REVISE

In order to revise a statement, press [revise]. [Revise] is now high-
lighted, and you may move the cursor through the program via the
arrow keys, making any necessary changes. Press [new-line] to quit
the [revise] function and continue entering the new program.
Whenever [new line] or [revise] is in effect, pressing it again will
cause you to exit that function, since both [new-line] and [revise] tog-

gle.

In the sample program, after pressing [rcvise] move the cursor up
to the first block. Maneuver the cursor by using the arrow keys. Over-
write AAAAA with ZZZZZ.

C. FIND

The soft key [find] allows you to search for a single character, or a
whole string.

NOTE: Be Sure The Entry Is Enclosed In Quotation Marks Or You Will
Receive An Emmor Message.

Once you have typed in your entry, the soft keys will ask you:

| thru unti all |

If you press [thru], Unidex 16 will find all entries up to and includ-
ing a specific place in the program.

If [until] is selected, the search will continue up to but not including
a specific place in the program.,

-47-

CHAPTER 3: THE EDIT MODE

[All], of course, causes Unidex 16 to search throughout the entire
program for the selected entry.

Pressing either the [thru] or [until] selection will display:

| <#.BLOCK> stat end <STRING>

At this point you may command Unidex 16 to search through or
search until a certain block, string of characters, program start or
program end. (If you choose < STRING > or < #-BLOCK >,
enclose the string’s characters or the block number in quotation
marks. If you are entering a number of blocks to search, upward or
downward, however, the number does not require quotation marks.)

If you've selected < #-BLOCK> or <STRING >, you are offered
the choice of [upward] or [downward]. The direction you choose is in
reference to the block which contains the block pointer.

In the case of multiple occurrences of the entry or string, the one
closest to the block pointer is the one that will be found. To continue
a search, just press < ENTER > if you are not in the [revise] mode.
Otherwise, reenter the string, or more simply, press <RECALL
LINE > in order to recall your [find] command without reentering it.
Now just press < ENTER > in order to find the next occurrence of
your entry.

The [all] selection is self-explanatory. Unidex 16 searches the en-
tire program for your requested entry. If the entry or string occurs
more than once within the program and you've selected [all], the
first line on which the entry occurs within the program is the one
Unidex 16 will find.

Using the sample program, press {find] and then type in "E". When
asked, press [thru), then [end) and <ENTER >. The block pointer
will jump to the last block.

CHAPTER 3: THE EDIT MODE

D. DELETE

‘When the soft key [delete] is pressed, the following choices ap-
pear:

L thru unti el |

Pressing [thru] or [until] will display:

[<#-BLOCK> stat end <STRING> I

The program will be deleted from the block pointer to a given
point. The point you select may be until or thru the start or end of the
program, or until or thru a particular block or string. Again, if you
choose <#-BLOCK> or <STRING >, you will next need to enter
[upward] or {downward], after entering the character or characters in
the delineating string or block. (These characters must be enclosed in
quotation marks.)

The command [all] will delete the entire program upon pressing
<ENTER>.

If {delete] is pressed, and then < ENTER >, instead of [thru],
[until] or [all], the line on which the block pointer is located will be
deleted.

Using the sample program, press [delete]. When asked, press
[until], enter "C", press [upward] and < ENTER >. The last two
blocks will be deleted. At this point, your program should consist of:

ol 777 4 4
* BBBBB
*CCCCC

-49-

CHAPTER 3. THE EDIT MODE

and the status line will say "deleted".

E. CHANGE

You can replace one character or string with another by using
the edit function [change]). When in the edit mode, press [--ETC--].
You will see:

| change merge move retrieve copy ~—ETC- |

Press soft key F1 for [change]. You will see displayed:

[<STRING > to |

Type in the entry or string to be changed, remembering to place
quotation marks around it. As you enter the characters, < STRING >
will disappear and only [to] will remain. Pressing [to], you will see:

| <STRING> thru unti all |

Type in the replacement string and press [thru], [until] or [all].

As in previous examples, {thru] or [until] will give you:

1 <#-BLOCK> start end <STRING>]

Depending on which of the above you select, your changes will
occur [thru] or [until] the: start of the program, the end of the
program, a given block or a given string. [All], of course, executes
changes throughout the entire program.

<#-BLOCK > or <STRING > entries will give you a choice of
[upward] or [downward].

CHAPTER 3: THE EDIT MODE

If, after requesting a change, you simply press <ENTER >, the
change will occur only on the block pointer line.

Once a change is made, the CRT displays the first screen of edit
functions. To get the [change] soft key again, press [-ETC--]. In fact,
pressing [-ETC—] will keep looping the three screens of edit func-
tions around again and again.

NOTE: Hyou mlstaléeriyaskforasoftkey command, just step backward by
use of the armow key (<), or press <SHIFT> and <CLEAR LINE >
simuitaneously.

Referring again to the sample program, press [--ETC--] to view the
second screen of soft keys. Press [change] and you will see:

| <STRING > to |

Enter "Z" and press [to]. The display will show:

| <STRING> thru unti all !

Type in "A”", press [all]] and <ENTER >. Your program should
now consist of:

* AAAAA
* BBBBB
*CCCCC

and the status line will tell you the total number of changes that took
place.

-51-

CHAPTER 3: THE EDIT MODE

-52-

F. MERGE

[Merge] joins an existing file with the file being edited.

In order to merge one program file with another, just press soft key
[merge]. You will see:

| <FILE> char-sub from-buff

The [char-sub] softkey will call for the Character Scribing Package,
if your system contains this option. It is explained in detail in chapter
13, Unidex 16 Options. The [from-buff] soft key is explained on the
next page.

To merge an entire file, simply type in the name of the file to be in-
corporated into the present file.

If you want the new file to be placed between lines 3 and 4, for ex-
ample, place the cursor on line 3, press [merge], type in the correct file
name and press <ENTER >.

Your soft key selection will then revert to the first page of edit func-
tions again.

Using the sample program of this chapter (SECOND), and the
sample program of the previous chapter (FIRST), we will merge two
files together.

Press {revise] to move the cursor to the last line of the second
program (SECOND), if it’s not already there. This should be the
block which reads CCCCC.

Press [--ETC-] to view the second screen of soft keys. Press
[merge] and type in the file name FIRST. Press [.PP] and

CHAPTER 3: THE EDIT MODE

<ENTER >. The two programs will be merged. (The program will
merge after the line that contains the cursor.)

In the above example, you merged two complete files. For an ex-
ample of merging a partial file, do the following. First [end] and [up-
date] this file. Now go into the example file called "FIRST". Go to
the second line, and press [-ETC--] twice, and you will see:

L renumber repeat mrg-start mrg-term —ETC-- !

Press [mrg-start] and < ENTER > for the beginning of the portion
of the file to be merged. Now go to the fifth line and press [-ETC--]
and then [mrg-term] and <ENTER > to terminate the portion of the
file to be merged. When you select [mrg-term), the portion to be
merged ends on the line above the cursor. (When we merge this into
another file, lines 2, 3 and 4 will be merged.)

Now [end] and [update] this file and edit the example file SECOND
again, by pressing [edit], entering the filename, pressing [.PP] and
<ENTER >,

Go to the second line of the program. Press [--ETC—] and then
[merge]l. Select [from-buff]. Press <ENTER >, and the lines
delineated in the file called FIRST by the [mrg-start] and [mrg-term]
commands, will be merged into the file called SECOND.

MOVE

{Move] relocates block(s) of data within a program. Press [move)].
The display of soft keys will show:
| thru until all |

Moving a section of program consists of:

-53-

CHAPTER 3: THE EDIT MODE

-54-

1. Placing data in buffer (extracting).
2. Placing data in another location (retrieving).

[All] will place the whole program in the buffer. You can get the in-
formation back by pressing [retrieve].

[Thru] and [until}, as in previous examples, will yield:

{ <#-BLOCK> stat end <STRING> |

Again, depending on which of the above you select, the data to be
moved will be [thru] or [until] the: start of the program, the end of the
program, a given block or a given string. If <#- BLOCK > or
<STRING > is chosen, {upward] and [downward] will be displayed.
Choose according to the location of your block pointer.

If you only press [move] and <ENTER >, the line on which the
block pointer is located will be the only one placed in the buffer.

Data that has been extracted can be recalled by pressing [retrieve].

NOTE: I further information is moved, the prior data in the buffer will be over-
written, and therefore lost.

RETRIEVE

Soft key function [retrieve] enables you to call back information
that has been either moved or copied into the buffer, and deposit it
anywhere in the program you like.

CHAFTER 3: THE EDIT MODE

When you want to retrieve material and place it between lines § and
6, for example, place the cursor at line 5 and press [retrieve]. The in-
formation will be placed between lines 5 and 6.

Using the sample program SECOND, [find] "B". That will take the
block pointer (and cursor if [revise] is activated) to the second block
of the program. Now press [move] and then [thru). You will see:

[<#-BLOCK> start end < STRING >]

Press [start] and <ENTER >. Both lines 1 and 2 of the program
will be removed and placed into the buffer. Skip down to the last line
of the program and press [-ETC-), [retrieve] and <ENTER >.
Lines 1 and 2 will now be the last two lines of the program,

. COPY

[Copyl] is like [move] in that it places data to be copied into the buff-
er. However, the program lines are left in the existing position as well.
It is duplicated in the buffer and will be copied elsewhere in the
program when [retrieve] is pressed.

These soft key functions are similar to the [move] selections. Press
[copy] and the soft keys display:

| thru until all |

[All] will copy the entire program. [Thru] and [until], as before, will
display:

[<#-BLOCK> start end <STRING> |

Depending on which of the above you select, the data to be copied
will be [thru] or [until] the: start of the program, the end of the
program, a given block or a given string. If you choose

-55-

CHAPTER 3: THE EDIT MODE

< #-BLOCK > or <STRING >, the choice of [upward] or
[downward] will be given.

If you press [copy] and then <ENTER >, just the line on which the
block pointer is located will be copied.

As in [move}, if you copy more information into the buffer, the prior
information will be overwritten.

By pressing soft key [~ETC-], you will see these editing choices:

| renumber repeat]

RENUMBER

You may number or renumber a program with the soft key [renum-
ber}, located on the third screen of edit functions.

When you press [renumber], the next group of soft keys will display:

| from# inc# no# |

These will give you the following choices:

from# -allows you to select a number for the first block.

inc# - allows you to select a number by which the following num-
bers will be incremented.

no# - allows you to eliminate the line numbers.

CHAFPTER 3: THE EDIT MODE

For example, if you wish to number your sample program, press
[~ ETC--] and [renumber]. The screen will display:

{ from# inc# no#]

You may just press < ENTER >, in which case you will have the
default values for line numbering, where the first line number is 1, and
the following line numbers increment by 1. Or, you can press [from#]
and enter a number, such as 10, for example. Then press [inc#] and
enter 5, for example. Press <ENTER >. Your program would dis-

play:

N10 (First block of program)
N15 (Second block of program)
N20 (Third block of program)

If you want to remove the line numbering, press [renumber], {no#]
and <ENTER >. The line numbering will disappear.

If you want to change the line numbering, just press [renumber],
press [from#] and enter a new first number. Then press [inc#] and
enter a new increment.

REPEAT

The edit function soft key [repeat] allows you to repeat a block of in-
formation over and over again. Simply move the block pointer to the
desired line, press [repeat] and <ENTER >, Each time < ENTER >
is pressed, that block will be repeated.

Go to any line of your sample program and try the repeat function.

«57-

CHAPTER 3: THE EDIT MODE

L. END

When you want to exit the edit mode, press [end]. The soft keys will
then display the choices:

| abort up-&-run update

In order to store the file you have just entered, press [update].
Unidex 16 will do internal file managing to put it into the proper loca-
tion in memory.

To eliminate the file you have just created, press [abort]. In this
case, nothing will change in the internal memory.

In the case of a revision, [update] will store the latest version of
your file, deleting the previous one. {Abort] will keep the previous file
and delete the revision just made.

If you choose [up-&-run), Unidex 16 will update the file and go
directly into the machine mode. Program execution will start from
where the Block Pointer is located in the program when [end] and [up-
date] was entered. The program will be scanned to set up variables,
but no lines that come before the block-pointer will be executed. There-
fore, you should be aware that variables will have a value of zero
when the program begins execution at the desired block. You would
probably want to make sure, therefore, that the block pointer is lo-
cated before the program blocks that set the variables to specific
values. (Program execution will be in the "single” mode.)

SECTION 3-2 REVISING AN EXISTING FILE

If you are revising an old file, press [edit]. Then enter the file name
when you see:

CHAPTER 3: THE EDIT MODE

[<FILE> new last-edit lastvun _digitize]

Then enter [.PP], [.CM] or [.TO] and press <ENTER >. Your file
will appear for revisions. However, [new-line] will not be highlighted.

The edit functions for revising an existing file are:

e new line
e revise

o find

e delete

e change
e merge
® Move

e retrieve
e Copy

e renumber
e repeat

Note that the edit functions are the same for both entering a new
file and revising an old one.

What is seen on the screen is a copy of the original file. If, after the
revisions, you press [end] [update], the original file is deleted and the
revised copy replaces it. On the other hand, if after the revisions, you
press [end] {abort), the original file is kept and the revised copy is
deleted. |

If you choose [up-&-run], Unidex 16 will update the file and go
directly into the machine mode. The program will be scanned to set

CHAPTER 3: THE EDIT MODE

up variables, but no lines that come before the block-pointer will be
executed. Therefore, you should be aware that variables will have a
value of zero when the program begins execution at the desired block.
You would probably want to make sure, therefore, that the block
pointer is located before the program blocks that set the variables to
specific values. (The program will be run in the single mode.)

NOTE: Since Unidex 18 is a multitask system, you may edit one program
while another one is running. As a safety precaution, however, you
cannot edit the program that is currently running. If you try to do so,
Unidex 16 will compilete the block &t Is currently executing and stop run-
ning the program. The file is now inactivated. To inactivate a fite, you
may aiso format the intemal memory. For detalls, see chapter 4, sec-
tion 4-1 F.

SECTION 3-3 PROGRAM SELECTION

At the beginning of this section, we mentioned that once a program
name is called for, either old or new, the program selection of either
[.PP], [.CM] or [.TO] must be entered (via the soft keys).

A. PARTS PROGRAM

The parts program, or [.PP), is your actual program, made up of mo-
tion commands (refer to chapter 10). An example of a parts program
we will call SAMPLE is:

SAMPLE .PP
(REF,X,Y,2)
GO X75. Y-75. Z-136.
G4FS5

CHAPTER 3: THE EDIT MODE

G1 Z-10. F500.

T0102

G4 F5

G41

X16. Y16. F500.

Y30.

X45.

Y-30.

X-45.

X-16. Y16.

G2 LS. D180 CO F500.
G2 19. DO C180 F500.
G40

G1 X16. Y-16. F500.
G1 X-16. Y-16. F500.
G1 Z10.

M30

B. TOOL FILE

The tool file contains tool diameters and offsets. The parts program
specifies the tool number and the line in the tool file from which to
get information on tool diameter and offsets. For example T0102
would call for Tool #1 using the offset information on line #2 of the
tool file. Following is an example of a tool file we will call SAMPLE.

SAMPLE .TO

001 D6. X5. Y3.
002 D10. ; D is tool dlameter

-81-

CHAPTER 3. THE EDIT MODE

C. COMMAND FILE

The command file, or [.CM], contains all of the soft key commands
Unidex 16 is to execute. For example, a command file may contain:

machine run FILE .PP auto

Now when the filename FILE is entered and <ENTER > is
pressed, the FILE parts program will run in the [machine] [auto]
mode.

A command file contains information that could have been entered
via the softkeys when initiating a program run. It is only a con-
venience, since once this information is entered into a command file
you need only enter the file name and press < ENTER > to initiate a

program run. Following is a example of a command file we will call
SAMPLE .CM:

machine run SAMPLE .PP SAMPLE .TO auto

The above command file will run the parts program SAMPLE in the
auto mode, incorporating into it the tool file information contained in
SAMPLE .TO.

An example of a more complex command file that we will call COM-
BINE .CM, is: :

file delete COMBINE .PP

end

edit new COMBINE .PP

merge FIRST .PP

merge SECOND .PP

end update

machine run COMBINE .PP auto

CHAFTER 3; THE EDIT MODE

When executed, the parts program COMBINE will be deleted, so
that a new version of it can be created. Two files are merged in the
file and it is then run in the auto mode. The next time the command
file COMBINE is run, the former version will be deleted and yet
another new one will be created.

How to create a parts program, tool file and a command file is
detailed in chapter 9.

NOTE: To protect a file, refer to chapter 4, section 4-1 D.

NOTE: Because you are working on a copy of a program when editing,
be aware that the program will require twice its normal amount of
memory.

Any edit operation that causes you to exceed memory will give
you an "out of memory”" error.

CHAPTER 4: THE FILE MODE

SECTION 4-1 FILE MODE FUNCTIONS

When you enter the file mode by pressing the soft key [file], the fol-
lowing soft key selections will be displayed:

[dir copy delete rename end —ETC-- |

A. DIRECTORY

If you choose the directory function ({dir]), you will see displayed:

| /mms /disk |

Press the key which indicates the source of the directory you wish
to view, either Unidex 16’s internal memory ({/mms]) or the floppy
disk ([/disk]). When you press < ENTER >, the first page of the
directory will be displayed. Following the list of files in your directory
is the amount of memory left and how much is available to you.

Press <NEXT PAGE > to see further listings within the directory
and <PREV PAGE > to review the previous page. You may use
<ROILLUP> and <ROLL DOWN > to move the directory up and
down, one line at a time.

-65-

CHAPTER 4; THE FILE MODE

B. COPY

1.

The soft key [copy] allows you to transfer data between port-A,
port-B, the disk and Unidex 16 internal memory. One program or all
files can be copied.

When you press [copy] you will see:

r <FILE> ali-fle /port-A /port-B]

<FILE>

<FILE > lets you know that a file name may be entered at this
time, if that is what you wish to copy. Simply type in the file name and
enter its type and location. An example would be:

FIRST
ILPP]
[/mms]

Unidex 16 will ask you, by means of the soft keys, to what location
you wish to copy the file. This means the command entry area will dis-

play:

file copy FIRST .PP /mms to

The soft key command area will display:

{ <FILE> /port-A /port-B

You can name a file (located in the internal memory or on a disk),
or you can press port-A or port-B.

CHAPTER 4. THE FILE MODE

To name a file, you simply type in the file name, enter the program
type and location. Example:

THIRD
[.PP]
[/mms] <ENTER>

When < ENTER > is pressed and the copy is made, you will see
the message:

*++ file copy done ***

If you choose a file name that already exists, Unidex 16 will tell you
so. (You will not be able to overwrite it.)

You may try this with your sample program from chapter 2. Press
[file] to enter the file mode. Then press [copy] and enter FIRST
[.PP] [f/mms]. At this point the command entry line will display:

file copy FIRST .PP /mms to

At the same time the soft key choices will be:

| <FILE > Jport-A_/port-B |

To copy to another file at this point, enter the name THIRD, press
[PP], [/mms] and <ENTER >. The status line will display:

w* file copy done ***

To see THIRD .PP added to your directory, press [dir], [/mms] and
<ENTER >.

-67-

CHAPTER 4: THE FILE MODE

To name port-A or port-B as the target, press the appropriate soft
key. Again, when <ENTER > is pressed and the copy is made, you
will see:

»+* flle copy done ***

If the file name you enter as the target already exists in the location
specified, you will see:

*»+ target file exists already ***
As you can see, you cannot copy into an existing file.

If the file you name as a source does not exist in the location
specified, you will see:

+~+ can't find source file ***
2. ALL-FILE

Pressing the [all-file] soft key indicates that all files are to be copied
from one source to another. When [all-file] is pressed, the following
soft keys will be displayed:

| /mms /disk /port-A /port-B |

Pressing [/mms] indicates that the files to be copied are stored in
Unidex 16 memory. The following soft keys will be displayed at this

point:

I /disk Jjport-A__jport-B]

On the other hand, pressing [/disk] instead of [/mms] will display:

| /mms /oort-A /port-B |

CHAPTER 4: THE FILE MODE

You may now choose to what location the files will be copied, ie.,
Unidex 16 memory, disk, port-A or port-B.

When the copy is complete, you will receive this message on the
CRT:

*** file copy done ***

NOTE: When copying all-files to memory from some source, check your [/mms]
directory to make sure none of the files have the same name and type as
those about to be sent. A duplicate file name with a duplicate program
type will cause Unkiex 16 to quit the copying function and send an error
message.

3. PORT-A AND PORT-B

Port-A and port-B can be configured as RS-232 or RS-422 com-
munication ports. Each can be connected to an external device such
as a printer or a host computer. Certain rules must be followed,
however. For details see section 4-2, File Transmission.

When copying from a port to the internal memory, you will be trans-
ferring programs from an external device to Unidex 16’s memory.
(For example, when downloading programs from a host computer to
Unidex 16.) When files are transferred from Unidex 16’s memory to a
port, you are sending programs from the internal memory to an exter-
nal device. (For example, when downloading programs from Unidex
16 to a printer.)

If the source from which you wish to copy is through port-A or port-
B, you have the choice of copying the information to Unidex 16
memory or the disk.

Please refer to section 4-2 for details on file transmission.

-89

CHAPTER 4: THE FILE MODE

C. DELETE

When in the file mode, the [delete] function will erase a file. Once
[delete] is pressed, you will see displayed:

{ <FILE>

This soft key display indicates that Unidex 16 is ready for the name,
type and location of the file to be deleted. Enter:

SECOND
[.PP]
[/mms]

When you press < ENTER >, the SECOND [.PP] program in
Unidex 16 memory will be erased and the soft key display will revert
to the original file mode selections.

To check on this deletion, press [dir]. This will show you an up-
dated version of your file directory.

D. RENAME

The soft key function [rename] is for one of three purposes:

1 Changing the name of a file
2. Protecting a file
3. Unprotecting a file

In order to change a file name, press soft key [rename]. The soft
key display will show:

| <FILE>

-70-

CHAPTER 4. THE FILE MODE

At this point, enter the file name you wish to change. Example:
FIRST
[.PP]
[/mms]

Unidex 16’s command entry area will display:

fiie rename FIRST .PP /mms to

The soft key command area will display:

| <FILE> protect no-prot |

You may now enter the name to which you wish to change. Ex-
ample:

FIFTH
[.PP]
[{/mms] <ENTER>

To check the directory in order to verify the name change, press
[dir], [/mms] and <ENTER >.

The second purpose of {rename] is to protect a file. When a file is
protected, it cannot be deleted or given another file name. It can,
however, be edited.

In order to protect a file, press [rename]. Then enter the file to be
protected, as well as file type and location. In the following example,
pressing [rename] will display:

| <FILE> |

-71-

CHAPTER 4. THE FILE MODE

Enter:
FIFTH
[-PP]
[/mms]

The soft key display will offer:

| <FILE> protect no-prot |

Pressing the [protect] soft key and <ENTER > will protect your
file. Tt will remain protected until you unprotect ([Do-prot]) it.

To unprotect your file, simply press [rename] again. Enter file
name, type and location. The soft keys will offer:

[<FILE> protect no-prot]

Enter [no-prot] to get your file out of protection.

E. END

Soft key [end] is self-explanatory. Press [end] and < ENTER > to
quit the file mode and revert back to the original mode functions:

[edit fle machine parameter test |

On the other hand, [-ETC~] will display two more file mode func-
tions. They are:

[format verify |

-72-

CHAPTER 4. THE FILE MODE

F. FORMAT

The soft key function [format] can be used for one of two purposes:

1. Formatting a disk
2. Formatting Unidex 16 memory

When you press [format}, you will be given the choice of internal
memory or a disk:

[/mms /disk |

1. DISK

If you press [/disk] and <ENTER >, Unidex 16 will format your
floppy disk. A new disk must be formatted before it is used.

CAUTION: [Format] [disk] will also destroy anything
previously recorded on the disk.

2. MEMORY

Unidex 16 always reserves some user’s memory as the stack, for
jumps, variables and subroutines that may occur within the parts

program. This reserved amount of memory cannot be used for any
other purpose.

The amount of memory reserved for these functions is user-
programmable within the parameter [EEPROM] mode. (For details
on setting parameters, see chapter 6, The Parameter Mode.)

-73-

CHAPFTER 4: THE FILE MODE

Once a file is active through the [run] mode, it will remain active as
long as a power down or <RESET > does not occur. The only way to
inactivate the file and free the memory reserved for its execution is to
format the internal memory. Press [format] and [/mms]. The status
line message will ask:

I Warning?? Stop & Destroy Working Piece??

You will be given the choice:

| yes no

This protects you from inadvertently clearing the memory (stack).
[Yes] will cause the parts program to quit running and cause Unidex
16 to quit the machine mode and inactivate the file that was currently
running. If you check the internal memory directory, you will see the
"A" (for Active) which is listed beside an active file is now gone. For-
matting does not erase any files within the memory.

Refer to chapter 10 to find how much memory is needed for func-
tions such as subroutines, repeat loops, etc.

G. VERIFY

In order to check one file’s contents against another’s, use the
[verify] soft key command.

When you press [verify], the screen displays:

| <FILE>

you may now enter the source file. Example:

FIFTH
{.PP]

-74-

CHAPTER 4: THE FILE MODE

{/mms]
Unidex 16’s command entry area will display:
file verify FIFTH .PP /mms against
You may now enter the target file. Example:

THIRD
[PP] <ENTER>

NOTE: The [/mms] or [/file] entry is unnacessary here, since the target file to
be verified must be in the Unidex 16 memory.

If the two files are the same, you will see:
*++ STATUS: files match each other ***
If the two files do not match, you will see:
*** STATUS: flies do not match ***

You can try this by verifying your file FIFTH against file THIRD.
Since one was copied from the other, you will see the message:

i+ STATUS: files match each other ***

-75-

CHAFPTER 4: THE FILE MODE

SECTION 4-2 FILE TRANSMISSION

TRANSMITTING FILE(S) FROM UNIDEX 16 TO PORT
A. TRANSMITTING ONE FILE FROM UNIDEX 16

When transmitting a file from Unidex 16 to port A or port B,
Unidex 16 automatically places a percent sign (%) before the program
(after the title). This is your begin-file character and is provided by
Unidex 16.

The end-of-file character is user-programmable. This character is
entered into the EEPROM (parameter 110). Then, when a file is
transmitted, both of these characters are placed into the file by
Unidex 16.

When transmitting a file from Unidex 16 to a port, follow this se-
quence:

[fite]

[copy]

FILE NAME

FILE TYPE - [.PP], [.TO] or [.CM]
FILE LOCATION - [/mms] or [/disk]
[/port-A] or [/port-B]

<ENTER>

Using the parts program SAMPLE as an example, the file will be
received by the port-A or port-B device as:

file name : @SAMPLE®@

file type : PP

length (bytes) : 110

last edit date : 08-12-1986 10:45

-76-

CHAPTER 4: THE FILE MODE

% G90 X1. Y2. F200.

Z-2

GAFS5

G91 G1 G70 X10. F200.

X-10.

Z2.

M30

(Programmable end-of-file character)

NOTE: The "@" symbol that is seen before and after the file name is automati-
cally inserted by Unidex 16. This Is true for the Begin-File (%) and
programmable End-of-File character as well.

B. TRANSMITTING ALL FILES FROM UNIDEX 16

When all files are to be transmitted, follow this soft key sequence:

[tile]
[copy]

[all-file]

[/mms] or [/disk]
[/port-A] or [/port-B]

Again, Unidex 16 will automatically enter the begin-file character
(%) as well as the end-of-file (parameter 110) and end-all-files
(parameter 111) characters that are set in the EEPROM.

CHAPTER 4: THE FILE MODE

TRANSMITTING FILE(S) FROM PORT TO UNIDEX 16

C. TRANSMITTING ONE FILE TO UNIDEX 16

When transmitting a file from port-A or port-B to Unidex 16, all of
the characters necessary for transmission must be entered by the
programmer. This means the begin-file and end-of-file characters
entered by Unidex 16 when Unidex 16 is transmitting, must now be
entered by the user. For example, to send one file to Unidex 16, follow
this sequence:

[file]

[copy]

[/port-A] or [/port-B}
FILE NAME (required)
FILE TYPE (required)
[/mms] or [Aile]

Unidex 16 expects to see the following from the host computer:

% (required)
I

one-file

I

end-of-file character (required) — This character must match
the end-of-file character progam in Unidex 16’'s EEPROM parameter
#110.

The file’s name and type while in the host computer is not impor-
tant to Unidex 16; bowever, the name and type of that file when in
Unidex 16 memory (or on the disk) must be specified. Also, the begin-
file (%) and programmable end-of-file characters must be entered into
the file by the user before transmission. The end-of-file character must
match the one programmed into the Unidex 16 EEPROM (parameter

110).

~18-

CHAPTER 4; THE FILE MODE

D. TRANSMITTING ALL FILES TO UNIDEX 16

When transmitting all files from a host computer through port A or
port B to Unidex 16, all characters necessary for transmission must be
entered by the user. To do so, follow this sequence:

[file]

[copy]

[all-file]

(from)

I/port-A] or [/port-B]
to

[/mms] or [/disk]

The begin-file (%) and programmable end-of-file character must
have been inserted into each file before transmission to Unidex 16.
The last file to be sent must have an end-all-file character after it’s end-
of-file character if transmission is to operate properly.

E. TIME-OUT

In order to prevent the system from "hanging-up" when files are
being transmitted between a port and Unidex 16, Unidex 16 will ter-
minate the "transmission active" state. The time that elapses before
this Time-Out is user-programmable and is set in the EEPROM,
parameter #161. The number entered is in seconds and may be to
65,535. If zero is the value of parameter #161, the default value is 5
minutes.

-7%-

CHAPTER 4. THE FILE MODE

The

SAMPLE TRANSMISSION PROGRAM

following is a parts program written on an IBM PC computer in

the Basic Language. It illustrates the type of commands required for
the proper transmission of a parts program.

Line 10

Line 20

NOTE:

10 OPEN "COM1:9600,N,8,1" AS #1

20 PRINT#1,"%";

30 PRINT#1,"; DRAWING NO. - 1333-1003"+ CHR$(10);
40 PRINT#1,"G1 F100."+ CHR$(10);

50 PRINT#1,°X10. Y12. Z12."+ CHR$(10);
60 PRINT#1,"G4 F1."+CHR$(10);

70 PRINT#1,°X-10. Y-12. Z-12."+ CHR$(10);
80 PRINT#1,"G4 F1."+ CHR$(10);

90 PRINT#1,"M47"+ CHR$(10);

100 PRINT#1, + CHRS$(9);

110 STOP

120 END

EXPLANATION OF BASIC PROGRAM

The first line establishes the baud rate (9600}, parity bit (N for none),
the bits per character (8) and the stop bit (1). These should be

here to match the parameter settings in your Unidex 16
EEPROM.

The percent sign (%) is the start byte. This s fixed, not user program-
mable. it is Important to remember the semicolon (;) at the end of the
line, In order to eliminate the carriage return/line feed.

Unidex 16 uses a line feed (ASCIl Code 0AH) as an end-of-block inter-
nally. Therefore, when inputting data from port A or port B, be certain
that there Is only one line fead at the end of each block.

When outputting to port A or port B, however, in order 1o match a con-
ventional terminal display or printer function, Unidex 16 outputs both
tine feed (0AH) and carriage-return (ODH) at the end of each block.

CHAPTER 4: THE FILE MODE

Line 30 to The information enclosed in quotation marks will be sent to Unidex
Line 80 16. The CHR$(10) provides the line feed (which is the end-of-block in
Unidex 16 files).

Line 100 The end-offile character is user-programmable. You must program |t
in the EEPROM, parameter #110. In this sample program, CHR$(9)
signals end-of-file transmission.

-81-

CHAPTER 5: THE MACHINE MODE

SECTION 5-1 MACHINE MODE FUNCTIONS

When you press soft key [machine] and < ENTER >, the follow-
ing options are available. You may:

1. Press < NEXT PAGE > to view subsequent pages on the
CRT.

2, Use the Axis Select Switch and Home button to send all
axes home.

3. Select a sub-mode by selecting one of the following:

| mdi_jog run single/auto end ~ETC-- |

A. JOG

[Jog] is the most basic of the machine modes. It allows you to
manually position your workpiece by use of the arrow keys, one axis at
a time,

If in a limit, [jog] the axis out by using the arrow keys.

You may use the Axis Select Switch and Home button in the jog
mode to send any axis home.

NOTE: The arrow keys control the movement of axes labeled X, Y and Z.
Axes labeled U, V and W are controlled by soft key commands +U, -
U, +V, -V, +Wand -W, listed among the jog mode’s soft key com-
mands. For X, Y and Z moves, the assignment of + or - to an arrow

-83-

CHAPTER 5: THE MACHINE MODE

key can be selected through the EEPROM parameter #160. For
detalls, see chapter 6.

Pressing [jog] displays the following display:

I minimum low medium _high top —-ETC--

The soft keys [minimum], [low], [medium], [high] and [top] all refer
to the speed at which the axes will move.

ENGLISH
(.0001 INCH MACHINE RESOLUTION)

Distance Feedrate
in Inches in Counts/minute
[Minimum] .0001 267.8
[Low] 001 5,000
[Medium] .01 50,000
[High] | 500,000
[Top] 1.0 1,250,000
METRIC

(1 MICRON MACHINE RESOLUTION)

Distance Feedrate
in Millimeters In Counts/minute

[Minimum] .001 267.8
[Low] .01 5,000
{Medium] .1 50,000
[High] 1.0 500,000
[Top] 10.0 1,250,000

CHAPTER 5: THE MACHINE MODE

At this point, select [low] speed and set the Manual Feedrate Over-
ride Switch to 50% until you are more familiar with your system.

Press [--ETC--] to see:

I +U -U +V -V -ETC-- |

NOTE: The following {+U, +V and +W axes) require an additional indexing
board.

1. +U,-UAXIS
Manual positioning of the U axis.
2. +V,-V

Manual positioning of the V axis. Press [--ETC--] to see:

[*W -W_—ETC-

3. +W,-WAXIS

Manual positioning of the W axis.

NOTE: Before jogging the U, V and W axes, select a speed through the [mini-
mum), [low], [medium)], [high] or [top] spead salection soft keys. No
movement will occur without a speed selection.

Press [-ETC--] to see:

| set-tn_return back-end end -ETC-

-85-

CHAPTER 5: THE MACHINE MODE

4. SET-RTN

[Set-rtn] enables you to set a temporary return point. You can
move away from this point and Unidex 16 will remember the
coordinates. When you press [return], Unidex 16 will send the axes
back. In order to set {set-rtn], jog the axes to the desired position.
Press [set-rtn]. If you move to a new position and set a new [set-rtn),
the former setting will be overwritten.

5. RETURN

[Return] will cause the axes to move to the position established with
the [set-rtn] command at whatever jog feedrate you have set.

6. BACK-END

[Back-end] is only seen when you quit running a parts program in
the run mode in order to enter the jog mode.

When finished the jog mode, press [back-end] to return the axes to
the positions they occupied when you quit the run mode.

The sequence of axes movement (which axis moves first) is setin
the parameter [EEPROM] mode (refer to section 6-2) and operates
the same as with [return]. All axes will move at the last jog feedrate.

7. END

[End] causes Unidex 16 to exit the jog mode, but unlike [back- end],
will not move the axes back to their original positions if in the middle
of a parts program. Press [-ETC~] to see:

P s-stop s-cw/on s-ccw/on rpm-dn_rpm-up ~ETC-- B

10.

11.

12.

CHAPTER 5: THE MACHINE MODE

NOTE: The following only apply to a system equipped with a MTI-16 board.
These functions are designed for machine tool applications where
spindle, clamp or coolant are frequently used. These functions are im-
plemented using the S and/or M functions to activate the MTI-16 board.

S-STOP

The soft key function [s-stop] will stop the spindle by outputting an
MS command. This command is recognized by the MTI- 16 board,
which then cancels the [s-cw/on] or {s-ccw/on] command.

S-CW/ON

The [s-cw/on] soft key turns the spindle on and causes it to rotate in
a clockwise direction through the M3 command.

S-CCW/ON

The {s-ccw/on] command turns the spindle on and causes it to rotate
in a counterclockwise direction through the M4 command.

RPM-DN

The soft key command [rpm-dn]* slows down the spindle speed
through the M40, M41, M42, M43 and M44 commands.

RPM-UP

The soft key command [rpm-up]* speeds up the spindle speed
through the M40, M41, M42, M43 and M44 commands. Press
[--ETC-] to see the following screen of soft key commands.

| clamp-on clamp-off cl1-on cl2-on cl-off —ETC-- |

- For frmp-up] and [rmp-dn], the speed change amount is programmed
in the parameter [EEPROM] mode (see section 6-2).

-87-

CHAPTER 5: THE MACHINE MODE

13.

14,

15.

16.

17.

CL1-ON

[Cli-on] turns on the coolant labeled #1 through the M7 command.
CL2-ON

[CI2-on] turns on the coolant labeled #2 through the M8 command.
CL-OFF

[Cl-off] turns off the coolant through the M9 command.
CLMP-ON

[Clmp-on] causes the clamp holding the spindle to close through the
M10 command.

CLMP-OFF

[Clmp-off] causes the clamp holding the spindle to open through
the M11 command.

MDI (MANUAL DATA INPUT)

[Mdi] is an immediate mode. That is, the commands entered are ex-
ecuted as soon as < ENTER > is pressed.

The mdi commands are retained in the buffer and will be executed
every time <ENTER > is pressed. When a new command block is
entered, the previous one is overwritten. This being the case, no
jumps or subroutines are possible within the mdi mode.

[Mdi) is more powerful than [jog] because more than one axis can
be moved at a time. You may jump to mdi while in the middle of run-

CHAPTER 5: THE MACHINE MODE

ning a parts program. You may select new statuses such as feedrate,
spindle speed, G codes and M functions. The statuses selected while
in mdi will override those of the parts program. At this point, your
soft key selections are:

{ <CMD> back-end end -—ETC-- B

Enter a block of commands and execute them in the mdi mode. For
example:

G1 G91 X1.0 Y1.0 Z1.0 U1.0 V1.0 W1.0 F50.0 £50.0
Any axes not applying to your system will just be ignored.
1. BACK-END

[Back-end] will cause Unidex 16 to end mdi and resume execution
where it had left off, if in the middle of a parts program. All statuses
will revert back to their previous values (except M functions, spindle
speed and T functions, which will retain their updated values). All
axes will move back to the positions they occupied when the parts
program was interrupted. The axes will return at the mdi feedrate.

The sequence in which the axes move back to their original posi-
tions is programmed in the parameter [EEPROM] mode (see section
6-2).

[Back-end] is only displayed when Unidex 16 jumps from the run
mode to jog or mdi.

2. END

[End] will cause Unidex 16 to end mdi. However, the previous
statuses will remain overridden by the mdi statuses.

Press [-ETC—] to see:

-89-

’
b

CHAPTER 5: THE MACHINE MODE

L s-stop s-cw/on s-cow/on_rpm-dn_rpm-up —~ETC- I

The soft key commands shown above serve the same purpose as
they did in the jog mode.

C. RUN

The [run] soft key allows you to run a complete parts program. The
screen will display:

[<FILE.PP> last-run last-edit |

You may press [fast-run] to run the most recently executed file, or
[last-edit] to run the most recently edited file. Or, you may enter the
name of the parts program to be executed. The following will be dis-
played:

| <AUX-FIL> .GOowr5% .GOowr25% auto dry-run B

The <AUX-FIL > indicates that if a tool file andjor awdliary parts
program accompanies your parts program, it may be entered now. If
both are to be included, the tool file must be entered before the

auxiliary parts program.
Tool files are explained in chapter 9.

The auxiliary parts program will be scanned to prepare for vari-
ables, entry points and subroutines, as is the main parts program. It
doesn’t matter which parts program defines variables, entry points or
subroutines, because the two programs will be treated as one in this
respect. Do not duplicate definitions in the two programs, however,
because that will cause errors just as it does in a single program.

CHAPTER 5: THE MACHINE MODE

The main parts program and the auxiliary parts program are not
treated as one continuous program when executing. The only way to
get from the main program to the auxiliary program or from the
awxiliary program to the main program, is by using jumps to entry
points or subroutine calls and returns. For example, the first block of
the auxiliary program will not be executed after the last block of the
main program unless the last block of the main program is a jump to
an entry point defined to be the first block of the auxiliary program.
The auxiliary parts program is useful for conserving memory, because
commonly used routines will not need to be duplicated in several
programs.

If, instead of running a program, you want a dry-run of your parts
program, you must utilize the functions .G0ovr5%, .GOovr25% and
dry-run. (These will be explained in the following subsection.)

Pressing < ENTER > will display:

l mdi_jog run auto/single end —ETC-]

The soft key [auto] allows you to choose if you will let the program
run in the single mode or change it to the auto mode. Choose auto or
single and <ENTER > to execute your parts program.

If in [auto), the entire program will run, but if in [single], only the -
first block will run. To run subsequent blocks, < CYCLE START >
must be pressed.

< CYCLE START > is also required if the program is run initially
in the [single] mode and is then switched to [auto] (or vice versa).
After the mode is switched, you need to press < CYCLE START > to
continue the program,

In both cases, pressing < SHIFT > <CYCLE START > causes
Unidex 16 to execute from the beginning of the program.

-91-

CHAPTER 5: THE MACHINE MODE

The soft key [end], of course, causes Unidex 16 to quit the machine
mode and revert back to the original display, but the program will
keep running.

Pressing [-ETC--] displays the following soft key selections:

I ‘GOovr5% .GOowr25% _ dry-run__ --ETC--]

a. .GOoovr5%

Pressing the soft key [.GOovr5%] indicates to Unidex 16 that you
want your program dry-run to be executed at 5% of the rapid traverse
speed, and not at the programmed feedrate. This applies when the
dry-run feedrate is inhibited. (GO indicates rapid traverse speed.)

b. .GOovr25%

The same as GOovr5% except this soft key command indicates to
Unidex 16 that you require the program to be executed at 25% of the
rapid traverse speed.

c¢. DRY RUN

Pressing [dry-run] will display the following choices:

[cr-set set clear |

1. Set

[Set] allows you to set all of the functions to be inhibited during a
dry run. For example, if you press [set] and then enter Z and X, those

-92-

CHAPTER 5: THE MACHINE MODE

two axes will remain stationary while the parts program is running. Ex-
ample:

[set]
XZ <ENTER>

You can inhibit all functions by entering [set] and then entering
[all]. Typically, when all functions are set, the dry run is utilized as a
syntax check, '

NOTE: When a syntax check results in an error, check the page which dis-
plays the parts program. The block pointer will be located either on
the block which contalins the error, or on the one above It.

2. Cir-set

[Clr-set] allows you to clear all inhibited functions and set new ones.
For example, if X, Y, Z and F are all inhibited and you wish to clear
all of them except F, press [clr-set], enter F and press < ENTER >.
This clears all previous settings and sets F again.

3. Clear

[Clear] allows you to clear restricted functions. You may enter
those to be cleared individually, or clear all of them by pressing the
soft key [all] when it is displayed.

It will be helpful at this point to enter a sample program (edit
mode) and run it (machine mode). Before running the program,
make sure the axes are at the positive end of travel. If your home posi-
tion is at the negative end of the axis, reverse all moves within the
program from positive to negative.

(REF,X,Y); or appropriate axes

-93-

CHAPTER 5: THE MACHINE MODE

G90 G1 X0.5 Y0.5 F50.0; Reverse the direction of all moves
if required

X1.5

X1.0Y0

X0

M2

After entering this program in the edit mode, run it in the machine,
single mode. If it runs well, run it again in the auto mode. Axes will
move in the shape of a parallelogram.

D. SINGLE/AUTO MODE

[Single/auto] is not an individual mode in itself. It is an extension of
the run mode.

The [single/auto] soft key toggles between the single and the auto
mode. The one seen in the status line area of the page is active,
while the one in the soft key command area is not. To toggle between
modes, press the soft key [single/auto].

Pressing [single/auto] displays the following soft keys.

| .GOow5% .GOovr25% dry-run

NOTE: To run a program directly from the edit mode, use the edit softkey
(up-&-run]. 1t Is explained in chapter 3, The Edit Mode.

SECTION 5-2 MACHINE MODE OPTIONS

The machine mode provides several means of adjusting parts
program execution, all available from the front panel. They are:

A.

CHAPTER 5: THE MACHINE MODE

1. Manual Spindle Speed Override
2, Manual Feedrate Override

3. Axis Select and Home

4, Block delete

S. Optional stop

MANUAL SPINDLE SPEED OVERRIDE

Spindle speed adjustment overrides the programmed spindle speed.
Therefore, when running a program, you may override the
programmed spindle speed by turning the spindle speed knob. The
values range from 0 to 200. The values represent:

0 - 0% of programmed spindle speed
100 - 100% of programmed spindle speed
200 - 200% of programmed spindle speed

In many cases the highest or the lowest spindle speed is limited by
the type of spindle used.

MANUAL FEEDRATE OVERRIDE

MFO overrides the programmed feedrate. When running a
program, you may override the programmed feedrate by turning the
feedrate knob. The values range from 0 to 200 and as with MSO, rep-
resent values ranging from 0 to 200%.

AXIS SELECT AND HOME

The Axis Select Switch and Home button work together and apply
to most machine modes. If you want an axis to be sent home, simply

-95-

CHAPTER 5: THE MACHINE MODE

-96-

select the appropriate axis on the Axis Select Switch and then press
the Home button.

Whether the machine is running in mdi, jog or single, Unidex 16
will finish the block it is executing and then send the axis home. (If it is
in the auto mode, however, Unidex 16 will ignore this function in
order to protect the workpiece.) After sending the axis home, Unidex
16 will await further commands from you.

BLOCK DELETE

The block delete switch gives you the option, when running a parts
program, of skipping certain blocks of program.

When editing the parts program, precede these optional blocks with
a slash (/). When running this program in the machine mode, if the
Block Delete Switch is on, these blocks will be omitted. If the switch
is off, they will not be omitted. Example:

G1 X2. V3.
/G1 X1. Y1.

In the above example, the second block will be skipped if the Block
Delete Switch is on.

Do not use Block Delete (/) in a block containing ICRC, jumps, sub-
routines or defined entry points, Use conditional jumps instead (see
section 12-4 B).

OPTIONAL STOP

During a machine run, the Optional Stop Switch gives you the op-
tion of stopping program execution whenever an M1 is encountered
within the parts program.

CHAPTER 5: THE MACHINE MODE

Simply enter an M1 (optional stop) rather than an M2 (uncondition-
al stop) when editing the parts program, if you wish to use the optional
stop. Then, when M1 is encountered, if the Optional Stop Switch is
on, the program will stop running. If it is off, the program will con-
tinue to run,

SECTION 5-3 MACHINE MODE DISPLAYS

In the machine mode, there are several pages of displays. Each
gives you pertinent information concerning statuses and parameters.
These pages are:

Tracking display

Position display

Parts program

G/H,F/E, S, T

Axig information

6. Miscellaneous

7. User-programmable message
8. Custom display page

WD

In the machine mode, these pages can be viewed by pressing
<NEXT PAGE>. The pages are described in the following subsec-
tions. The name of the page being viewed will be highlighted in the
lower portion of the CRT,

TRACKING DISPLAY

The tracking display shows all six axes and the current position of
each. As the axes move, the values on the page change as well. The
tracking display page is depicted in figure 5-1.

-97-

CHAPTER 5: THE MACHINE MODE

X 23410 U 3.4891
Y -1.9339 V 23912
Z 25782 W -1.2855

FIGURE 5-1: TRACKING DISPLAY

The example shown in figure 5-1 is utilizing all six axes.

B. POSITION DISPLAY

The position display shows the "program position", the "machine
position”, the "position to be", the "current position" and the "distance
to go”.

The "program position" shows the positions entered in the parts
program in inches or millimeters. These are the coordinates of the
workpiece contour that the Unidex 16 is programmed to follow at the
end of the current block. The position is referring to the user’s
reference zero (floating home).

The "machine position” shows the physical position of the axes with
respect to the home position, in machine steps, at the end of the cur-
rent block.

The "position to be" is the position to which the axes are going to be
moved, with respect to the user’s reference zero. It differs from
"program position" by the amount of tool offset or ICRC currently
employed.

The "current position" and the "distance to go" should, at any given
moment, add up to the "position to be". The "current position" is the
current axis real-time position.

CHAPTER & THE MACHINE MODE

The "distance to go" is the distance remaining to be finished in the
current block of parts program.

The position display is depicted in figure 5-2.

program machine position current distance

position position tobe position togo
<X> 0.200 1.800 0.200 0.200 0.000
<Y> 0.200 10.500 0.200 0.200 0.000
<Z> -3.000 1.500 ~3.000 -3.000 0.000
<U>
<V>
<W>

FIGURE 5-2: POSITION DISPLAY

Figure 104 of chapter 10 further illustrates the position display.

C. PARTS PROGRAM

The parts program display shows your parts program as it is being ex-
ecuted.

The block currently being executed will be highlighted (figure 5- 3).

* G23 F200

FIGURE 5-3: PARTS PROGRAM DISPLAY

CHAPTER 5: THE MACHINE MODE

-100-

As can be seen in the above figure, the second block of commands
is currently being executed, since it is the one that is highlighted.

D. G/H,FIE,S, T

G&H
function :

CanCycle:
Feedrate :
S function:
T function:

This display allows you to view current:

1. G/H code

2. Feedrate
3. Spindle speed
4. Tool information

The H and E codes are counterparts for the G and F codes. G and
F apply to the X, Y and Z axes; H and E apply to the U, V and W axes.

The statuses that are in effect are the ones that are highlighted on
the screen. These statuses may be entered through the parts program
or mdi.

The G/H,F/E,S,T page is shown in figure 5-4.

GO00/G01/G02/GO3 G23/G24 HOO/HO1/HO2/HO3 H23/H24
G17/G18/G19 G70/G71 H17/H18/H19 H70/H71
G08/G09 G90/GI1 HO8/HO9 H90/H91
G40/G41/G42 G98/G99
G76/G77/G78/G81/G82/G83/G84/G85

F= 0.0 E= 0.0
S = cw/cew

tool # = diameter =
offset = X Y ¥4

1) \Y w

FIGURE 5-4: G/H, F/E, S, T DISPLAY

CHAPTER 5: THE MACHINE MODE

An explanation of the codes follows:

GO0 - Rapid traverse (top speed)

GO1 - Linear interpolation

G02 - Circular movement, CW

GO03 - Circular movement, CCW

GO8 - Gradual acceleration

GO9 - Gradual acceleration/deceleration

G17 - X and Y axes on the same plane

G18 - Z and X axes on the same plane

G19 - Y and Z axes on the same plane

G23 - Corner rounding

G24 - Non-corner rounding

G40 - Cancel G41 and G42

G41 - Intersectional cutter radius compensation (left)
G42 - Intersectional cutter radius compensation (right)
G70 - Axes travel in inches

G71 - Axes travel in millimeters

G76 to G78 - Canned cycles

G81 to G85 - Canned cycles

G90 - Absolute mode

G91 - Incremental mode

G98 - Temporary return *

G99 - Return to original position *

F - Feedrate

S function - Spindle speed, CW and CCW

T function - Tool number, diameter and offsets for each axis

* Applies to canned cycles G81 and G8S5 only

-101-

CHAPTER 5. THE MACHINE MODE

E. AXIS INFORMATION

The axis information display (figure 5-5) shows information concern-
ing: |
1. Assigned axes
2. Mirrored axes

3. Dryrun
4. Scaling function and factors
5. Synchronization

Whichever statuses are in effect are highlighted. An explanation for
each status is as follows:

1. ASSIGNED AXES

Axes pertaining to your system are highlighted. This information is
entered through the parameter mode.

2. MIRRORED AXES

It may shorten the length of your program to mirror some axes’
movements. Which axes are mirrored is displayed on the axis informa-
tion screen. This information is entered through the parts program,
using command (MIR). (See section 8-2.)

Exist : —-X-- =Y -Z~ —U— —V— —W---
Mirror : nofyes no/yes no/yes nofyes nofyes nofyes
Drun : nofyes nofyes no/yes nofyes nofyes no/yes

Sfact :
S func : nofyes
Sync : nofyes

Uint : INT4- INT3- INT2- INT1- CIRQ-

FIGURE 5-5: AXIS INFORMATION DISPLAY

-102-

CHAPTER 5: THE MACHINE MODE

3. DRYRUN

When executing a dry run, some axes (or all) may be inhibited.
When an axis is inhibited, it is displayed on the axis information page,
but no movement occurs. If inhibited, the "yes" portion will be high-
lighted. Dry run information is entered through the machine mode.

4. SCALING

It may be convenient to run a program on a larger or a smaller
scale. If so, this information would be entered in the parts program or
through mdi, using the command (SCF). (See section 10-2.) The scal-
ing function on the page will display a highlighted "yes". The scaling
factor will display the number by which the axes movement will be
scaled. Scaling can range from 0.00001 to 99.99999. This value is
entered through the parts program also.

5. SYNCHRONIZATION

If axes from group XYZ are to be synchronized with axes from
UVW, you will need Synchronization. The axes will then begin and
end at exactly the same time. Synchronization must be entered
through the parts program or mdi. Command (SYNC,1) will turn it
on and (SYNC,0) will turn it off.

If synchronization is on, the axis information page will display a
highlighted "yes" beside "Sync". Synchronization only applies if your
system is utilizing axes from both groups.

NOTE: If "yes/no" appears only one time beside a gliven parameter, it means
that the selection applies to all axes.

-103-

CHAPTER 5: THE MACHINE MODE

6. INTERRUPT

You may program an interrupt in your parts program. Which inter-
rupt source (INT4, INT3, INT2, INT1, or CIRQ) as well as which in-
terrupt option you choose, is shown on the axis information display.

For details on interrupts, see section 10-2.

F. MISCELLANEOUS

The miscellaneous display (figure 5-6) pertains to individual
programs, It gives information on:

1. /O FORMAT

The I/O bus format (8 bits) gives you the choice of utilizing either
BCD or binary when transmitting or receiving information over the
bus. The bytes selection lets you choose a 1, 2, 3 or 4 byte format
when transmitting information, as well.

This information is entered through the parts program with the com-
mand (IOFT). See the Unidex 16 Hardware Manual for more infor-
mation on the I/O format.

2. CUTTER COMPENSATION
Cutter compensation compensates for the radius of the tool.

This information is entered through the parts program or mdi by
use of the command (CCP). (See section 10-3.)

-104-

CHAPTER 5: THE MACHINE MODE

Figure 5-6 shows the Miscellaneous page.

$1/0 format : BIN/BCD
bytes : 1/2/3/4
Cutter compensation :

FIGURE 5-6: MISCELLANEOUS PAGE

G. USER-PROGRAMMABLE MESSAGE

Only if the parts program has a message will MSG become one of
the pages. It will then be seen displayed on the CRT.

To add a message to your parts program, refer to section 10-2.

H. DISPLAY PAGE

The last machine mode status screen is available for customer-
defined displays. This is page 8 and is only seen if programmed with a
display (DISP) command in a parts program. (For details on the dis-
play command, refer to section 10-2.)

This page does not always come up automatically, as does the Mes-
sage Command (explained in section 10-2 also). If programmed with
a DISP command, however, it can be programmed to come up
automatically. When this page is programmed, use < NEXT PAGE >
to access it, as you would the other status screens.

The location of the information written to this screen is defined by
programming the row and column of the first character’s position,

-105-

CHAPTER 5: THE MACHINE MODE

starting from the left of the screen. The data will overwrite previous
data, up to the length of the new data. If the previous data was longer
in length, the excess characters will not be overwritten and will remain
on the screen. To avoid this situation, be sure to clear the proper num-
ber of spaces, as explained in section 10-2.

Rows may range from 1 to 12 and columns from 1 to 60. If data is
longer than the line length of the screen, the data will "wrap around”
to the next line on the screen.

There are commands to clear the display screen, deactivate it, or
bring it up automatically. Refer to section 10-2 for details.

SECTION 544 HANDLING LIMITS

As mentioned in section 5-1 A, if an axis runs into a limit, use the
arrow keys (for the X, Y and Z axes) or the softkeys (for the U, V and
W axes) to jog it out of the limit.

-106-

CHAPTER 6. THE PARAMETER MODE

Pressing the soft key [parameter] yields two choices:

| .EEPROM clock end

SECTION 6-1 CLOCK

Choosing [clock] allows you to read or set the day-month-year-
hour-minute-second. To read the date and time, press [clock] and
<ENTER >,

To set a new date and time, press [clock] and the enter the date and
time in the following format:

dd-mm-yy-hh-mm-8s <ENTER >
as, 11-06-87-10-35-45 <ENTER >

To exit the clock mode, press the soft key [end] and then press
<ENTER>.

NOTE: System <RESET > does not reset the date and time. The clock is
reset when Unidex 16 is shut down uniess the Unidex 16 Real-Time
Clock has been installed. (See section 13-3 for more details on the
Unidex 16 Real-Time Clock option.)

-107-

CHAPTER 6: THE PARAMETER MODE

SECTION 6-2 EEPROM

Selecting [parameter] again, press [EEPROM] and <ENTER >.
The parameters available to Unidex 16 will be displayed. The first
page shows all the parameters for communication through port-A and
port-B. The highlighted parameter is the one that is set. Figure 6-1il-
lustrates what the first page of parameters displayed on the screen
should look like.

Flashing sections represent the parameters which are in effect. To
change the status, [skip-up] or [skip-down], or use the arrow keys, to
reach the appropriate line. Press [select] to jump forward to each
new selection. Press [store] to set selection as the currently active
parameter. (Press < NEXT PAGE > if you wish to view the next
page of parameters.)

Parameters For Communication Channels

Port —A- Port -B-
parity : yes force no mt-drop : yes force no mt-drop
p-type : even odd : even odd
b/char : 5 6 7 8 : 5 6 7 8
stop bit : 1 1.5 2 HE | 1.5 2
clk set : 1 2 <for both port —A- & port -B->
Rx rate : 30 110 1345 200 300 : 50 110 134.5 200 300
600 1050 1200 2400 600 1050 1200 2400
4800 7200 9600 38400 4800 7200 9600 38400

STATUS: read & revise .EEPROM

store select skip—up skip—dn end

FIGURE 6-1: FIRST EEPROM PAGE

-108-

TYPE:

Parity

Parity type
Bits/character
Stop bit
Clockset

2

CHAPTER 6: THE PARAMETER MODE

EEPROM PAGE

- Parity bit off or on

- Odd or even parity

- 5, 6,7 or 8 bits per character

- Stop bit 1, 1.5 or 2 bits

- Each clock setting gives a different set of baud

rates. Clock set 1 gives baud rates shown in
-figure 6-1, while Clock set 2 gives:

75 110 134.5 150 300
600 1200 2000 2400
4800 1800 9600 19200

- Receiving baud rate *
- Transmitting baud rate *

*Tx and Rx may be different values

Referring to the following pages, some information is entered as bi-
nary numbers and some is entered as decimal numbers. The decimal
numbers fall into different ranges. The "TYPE" column gives this in-
formation as A, B, Cand D:

A - BINARY NUMBERS (0 or 1)

B - DECIMAL NUMBERS RANGING FROM 0 - 255

C - DECIMAL NUMBERS RANGING FROM 0 - 65,5635

D - DECIMAL NUMBERS RANGING FROM 0 - 16,000,000

NOTE: The bits of the parameter are designated as 0 - 7, reading right to left:

7686543210 (Positionofbits)
00000000 (Parameter bits)

-108-

CHAPTER 6: THE PARAMETER MODE

PARA#

NOTE: The 100 group of parameters applies to general information. The 200,
300 and 500 group apply to machine and axis control. The 400 group

applies to MST functions.

PAGE 1

EXPLANATION

TYPE

100

101 .

102

110

111

-110-

End address of user's RAM for basic system
(65535 for 16K of user's RAM, add 32768
for each additional 32K of user's RAM)

Time after which CRT goes blank (in
minutes) after the last key is depressed

Soft key attributes

76543210
oooooo000O
(Not Underlined)

765432
000000
(Underlined)

10
10

76543210

11000000
(Reverse Video)

ASCII character which designates the end of
file transmission

ASCII character which designates the end of
all-file transmission

CHAPTER 6: THE PARAMETER MODE

PARA# EXPLANATION TYPE

112 Status line message duration B
255 = Infinite
0 to 254 = Time range in seconds

120 Reserved

121 Joystick or Parallel Keyboard Option A
00000000 - Parallel Keyboard option
00000001 - Joystick option

122 Reserved

130 Drive format (1-9) B

{Sea section 13-2 for further information on the disk drive)

131 Reserved

132 Reserved

140 Reserved

141 Reserved

142 Reserved

150 AJC power fail B
00 = Disable function
01 = Display information when fail is detected

-111-

CHAPTER 6: THE PARAMETER MODE

PARA# EXPLANATION
02 = Display information when fail is detected,
and force to single mode
151 Check amplifier fault
00 = Disable function
01 = Display information when fail is detected
02 = Display information when fail is detected,
and force to single mode
152 Check D/A overrun or Halt
00 = Disable function
01 = Display information when fail is detected
02 = Display information when fail is detected,
and force to single mode
160 Select + or - move for jog mode (X, Y and Z
axes only)
bits: 76543210
x Y Z * k k & *
0- X'right"arrowis +
Y “in* arrow in is +
Z"up' arrow is +
1- X'eft"arrowis +
Y "out" arrow is +
Z "down" arrow is +
An arrow key will cause an axis to move
either + or -. This parameter determines
the direction when an arrow key is pressed.
161 Set RS-232 Time-Out. Number ranges from
0-65,535
0 = Default setting of 5 minutes
1 - 65,535 = Time-Out in seconds
162 Reserved

-112-

PARA#

CHAPTER 6: THE PARAMETER MODE

PAGE 2

EXPLANATION

TYPE

201

202
210
211
212
220

221

Metric constant and resolution for the X axis
- G71. To calculate this value:
100000 x (programming resolu-
tion/machine resolution)

English constant and resolution for the X

axis - G70. To calculate this value:
100000 x (programming resolu-
tion/machine resolution)

Metric constant and resolution for the Y axis
- G71. Use formula as in parameter 200

English constant and resolution for the Y
axis - G70. Use formula as in parameter 201

Maetric constant and resolution for the Z axis -
G71. Use formula as in parameter 200

English constant and resolution for the Z
axis - G70. Use formula as in parameter 201

Metric constant and resolution for the U axis
- G71. Use formula as in parameter 200

English constant and resolution for the U
axis - G70. Use formula as in parameter 201

Metric constant and resolution for the V axis
- G71. Use formula as in parameter 200

“113-

CHAPTER 6;: THE PARAMETER MODE

PARA#

EXPLANATION

TYPE

231

232

240

241

242

250

-114-

English constant and resolution for the V
axis - G70. Use formula as in parameter 201

Metric constant and resolution for the W axis
- G71. Use formula as in parameter 200

English constant and resolution for the W
axis - G70. Use formula as in parameter 201

Fastest feedrate for X, Y and Z axes in
counts/minute

Fastest feedrate for U, V and W axes in
counts/minute

Axes which exist in system (set bit 7 for X,
bit 6 for Y, etc.):
76543 210
XYZUVW?®*=*
1 - Active
0 - Inactive
* - Don't care

Default to acceleration (G8/HB)/ accel/decel
(G9/H9). The G8/HB or G9/HI set in the
parameter mode will override the parts
program.
76 5 43210
GBGOHBHY * * » *

1 - Active

0 - Inactive

* - Don't care
if the acceleration/accel-decel is set in the
EEPROM, it effects the entire program. If it
is entered in the parts program it effects only

PARA#

CHAPTER 6: THE PARAMETER MODE

EXPLANATION

TYPE

251

252

260

261

262

the block in which it is located. If feedrate
threshold is exceeded, acceleration/accel-
decel is automatically tumed ON.

For X, Y and Z axes —time constant for ac-
celeration /deceleration function
parameter = time constant (mil-
liseconds)/32.768 -

(Time constant from 65 to 8356 gives
parameter range from 2 to 255)

For U, V and W group —time constant for ac-
celeration/deceleration function

parameter = time constant (mil-
liseconds)/32.768

(Time constant from 65 to 8356 gives
parameter range from 2 to 255)

Skip limit
7654 3210
XYZUVW®*»
1 = Check limit
0 = Don't check limit
* = Don’t care

Stack size, utilized in running parts program
(reserved for RPT, CLS, DFS, DFLS, vari-
ables and entry points)

Parts program defaults
76543210
A * % k * B C *
* = Don't care
A : Tracking display default
0 = Display in machine steps

-115-

CHAPTER 6: THE PARAMETER MODE

1 = Display in program steps
B : XYZ axes default

0 = Default to G70

1 = Default to G71

C : UVW axes default
0 = Default to H70

1 = Default to H71

PAGE 3
PARA# EXPLANATION TYPE
300 The axis that is set to move first in sequence A
of axes movement (for [back-end] mode)
765 43210
XYZUVW**
1 = Set to move
0 = Set not to move
* = Don't care
301 The axis that is set to move second A
302 The axis that is set to move third A
310 The axis that is set to move fourth A
311 The axis that is set to move fifth A
312 The axis that is set to move sixth A
320 Home direction A

116

76 5 432 10
XYZUVWH**
1 = Positive

CHAPTER 6: THE PARAMETER MODE

PARA# EXPLANATION TYPE
0 = Negative
* = Don't care
321 Home feedrate for X axis (counts/minute D
from 229 to 8,000,000}
322 Home feedrate for Y axis D
330 Home feedrate for Z axis D
331 Home feedrate for U axis D
332 Home feedrate for V axis D
340 Home feedrate for W axis D
341 Home offset for X axis D
(counts from O to 8,388,607)
342 Home offset for Y axis D
350 Home offset for Z axis D
351 Home offset for U axis D
352 Home offset for V axis D
360 Home offset for W axis D
361 Reserved
362 Reserved

-117-

CHAPTER 6: THE PARAMETER MODE

PAGE 4
PARA# EXPLANATION TYPE
400 M function: Milliseconds from data latch C
until strobe
401 M function: Milliseconds to debounce ac- C
knowledge/strobe length
402 S function: Milliseconds from data latch until C
strobe
410 S function: Milliseconds to debounce ac- C
knowiedge/strobe length
411 T function: Milliseconds from data latch until C
strobe
412 T function: Milliseconds to debounce ac- B
knowledge/strobe length
420 Spindie type: * B
1. ONCE-PER-REV : No output on S func-
tion bus. Uses M functions to perform
Spindle tasks.
2. TWO'S COMPLEMENT:
S COMMAND OUTPUT SCALE MSB LSB
S 32767 + Full scale o111 1111 1111 1111
S 32766 + Full scale -LSB 0111 1111 1111 1110
S 00001 + LSB 0000 0000 0000 D001
S 00000 Zero scale 0000 0000 0000 0000
S-00001 -LSB 1111 1111 1191 1111
S§-32767 - Full scale +LSB 1000 0000 D000 0001

-118-

$-32768

3. UNIPOLAR BINARY:
S COMMAND

S 65535
'S 65534
S 00000

- Full scale

OUTPUT SCALE

+ Full scale
+ Full scale -LSB
Zero scale

4. COMPLEMENT BINARY:

S COMMAND

§ 65535
S 65534
S 00000

5. OFFSET BINARY:
S COMMAND

S 32767
S 32766
S 00001
$ 00000
S-00001
$-32766
$-32767

OUTPUT SCALE

+ Full scale
+ Full scale -LSB
Zero scale

OUTPUT SCALE

+ Full scale

+ Full scale -L.SB
+ LSB

Zero scale

-LSB

- Full scale +LSB
- Full scale

6. BIPOLAR COMPLEMENT:

S COMMAND

$ 32767

OUTPUT SCALE

+ Full scale

CHAPTER 6: THE PARAMETER MODE

1000 0000 0000 0000

MSB LSB

1111 1111 1111 111
1111 1111 1111 1110
0000 0000 0000 0000

MSB LSB

0000 0000 0000 0000
0000 0000 0000 0001
1111 1111 1111 111

MSB LSB

1111 1111 1111 1111
1111 1111 1111 1110
1000 0000 0000 0001
1000 0000 0000 0000
0111 1111 1111 1111
0000 0000 0000 0001
0000 0000 0000 0000

MSB LSB

0000 0000 0000 0000

-119-

CHAPTER 6: THE PARAMETER MODE

S 32766 + Full scale -LSB 0000 0000 0000 0001
S 00001 + LSB o111 1111 1111 1110
S 00000 Zero scale 0111 1111 1111 1111
S-00001 -LSB 1000 0000 0000 0000
§-32766 - Full scale +LSB 1111 1111 1111 1110
§-32767 - Full scale 1111 1111 1111 1114
7. UNIPOLAR BCD:

S COMMAND OUTPUT SCALE MSB LSB

S 09999 + Full scale 1001 1001 1001 1001
S 09998 + Full scale -LSB 1001 1001 1001 1000
S 00001 + LSB 0000 0000 0000 0001
S 00000 Zero scale 0000 0000 0000 0000
8. BIPOLAR BCD:

S COMMAND OUTPUT SCALE MSB LSB

S 07999 + Full scale 0111 1001 1001 1001
S 07998 + Full scale -LSB 0111 1001 1001 1000
S 00001 + LSB 0000 0000 0000 0001
S 00000 Zero scale 0000 0000 0000 0000
S-00001 -LSB 1000 0000 0000 0001
S-07998 + Full scale +LSB 1111 1001 1001 1000
S-07999 - Full scale 1111 1001 1001 1001

NOTE: For 12 bit resolution on all unipolar binary formats, use right most 12 of
16 bits.

For 12 bit resolution on all bipolar formats, use left most bit (MSB) as
sign bit, and right most 11 of 16 bits for magnitude.

For 3 digit resolution with sign on bipolar BCD format, use left most bit
(MSB) as sign bit, and right most 12 of 16 bits for 3 digits. .

-120-

PARA#

CHAPTER 6: THE PARAMETER MODE

* Manua! Spindie Speed Override applies to all types of spindies.

* Once-per-Rev spindie type uses M functions to perform spindle tasks.
The other types listed use the S function bus. Select the spindle type

which cotresponds to your D/A pattern.

. EXPLANATION

TYPE

421

422

431

432

Spindle speed: Increment or decrement
speed for jog or mdi's rpm-up or rpm-dn by
this number. Applies to all typesofspindies
(range is from 1 to 255)

Spindle high-gear range maximum rpms (for
Once-per-Rev spindle types)

Indicates the positive high limit for other
types (range is from O to 65535)

Spindle high-gear range minimum rpms (for
Once-per-Rev spindle types)
Positive low limit for all other types

Spindle low-gear range maximum rpms (for
Once-per-Rev spindle types)

Does not apply to Unipolar and Comple-
ment Binary types

Negative high limit for all other types

Spindle low-gear range minimum rpms (for
Once-per-Rev spindle types)

Does not apply to Unipolar and Comple-
ment Binary types

Negative low limit for all other types

-121-

CHAPTER 6: THE PARAMETER MODE

450

-122-

Spindle ratio: Pertains to Once-per-Rev
types. Indicates teeth ratio: (low range gear-
ing/high range gearing) x 1024

Dead band (1 - 10%). Indicates speed
changer accuracy for the Once-per-Rev type

For MO, M1, M2, M30 and M47 - functional

control

00 = Perform software function, output data to
MST bus with Type A handshake as
described in the following note.

01 = Completely skip the codeword, no output
to MST bus

02 = Perform software function, output data to
MST bus with Type B handshake

03 = Perform software function, output data to
MST bus with Type C handshake

04 = Perform software function, no output o
MST bus

05 = No software function performed. Output
code to MST bus with Type A handshake

06 = No software function performed. Output
code to MST bus with Type B handshake

07 = No software function performed. Output
code to MST bus with Type C handshake

NOTE: For handshake type, see Note on next page.

Normal M functions - functional control
00 = Perform software function (if exists), out-
put data to MST bus with Type A hand-

shake.
01 = Completely skip the codeword
02 = Perform software function (if exists), out-

put data to MST bus with Type B hand-
shake

451

452

461

462

CHAPFPTER 6: THE PARAMETER MODE

03 = Perform software function (if exists), out-
put data to MST bus with Type C hand-
shake

NOTE: Al M-functions pertaining to once-per-rev spindle types (M3-M5, M40-
M44) will always walt for an acknowledge signal as long as type code
is not set to 1 (skip)

Normat S functions - functional control (does B
not apply to once-per-rev spindle types)
Same as parameter #450

For T functions

00 = Perform software function, ie., tool length
and tool radius compensation. Output
data to MST bus with Type A handshake

T functions follow same format as parameter

#442

Reserved
Reserved

Reserved

NOTE: MST output handshake may be one of three types, (explained in detail
in the Unidex 16 Hardware Manual . This is unrelated to the "type"
column of this chapter, which refers to type of data to be entered).
Briefty:

TYPE A: Output code to bus, wait forever for acknowledge
TYPE B: Output code to bus, no acknowledge
TYPE C: Output code to bus, wait for timed acknowledge

-123-

CHAPTER 6: THE PARAMETER MODE

PAGE 5
PARA# EXPLANATION TYPE
500 Reserved
501 Reserved
502 Reserved
510 Feedrate threshold for automatic Acel/Decel D
ON (X,Y,Z axes) in counts per minute
511 Feedrate threshold for automatic Acel/Decel D
ON (U,V,W axes) in counts per minute
520 Program new name for X axis. New name B
must consist of two characters (upper case
alphabetic), entered as 01-26 (A-Z respec-
tively)
521 Program new name for Y axis. New name B
must consist of two characters (upper case
alphabetic), entered as 01-26 (A-Z respec-
tively)
522 Program new name for Z axis. New name B
must consist of two characters (upper case
alphabetic), entered as 01-26 (A-Z respec-
tively)
530 Program new name for U axis. New name B

-124-

must consist of two characters {upper case
alphabetic), entered as 01-26 (A-Z respec-
tively)

531

532

540

CHAPTER 6: THE PARAMETER MODE

Program new name for V axis. New name
must consist of two characters (upper case
alphabetic), entered as 01-26 (A-Z respec-
tively)

Program new name for W axis. New name
must consist of two characters (upper case
alphabetic), entered as 01-26 (A-Z respec-

tively)

The bits of this parameter have an effect on
various unrelated functions.

Bit O - If the rightmost bit of parameter 540 is set
to 1, trailing zeroes and the decimal point
will be truncated during message output.
For example, 7.2300000 will be output as
7.23, and 12.000000 will be output as 12
with no decimal point.

Bits 1 When a MSG command causes variable

& 2 - data to be input through port-A and/or
port-B with a command such as
(MSG, <A,VAR1,VAR2 > .. .text...), the
characters are echoed back to the host.
if you do not want port-A or port-B to
echo back incoming characters to the
host after this data has been input, set
bits 1and 2to 1. K bit1is setto 1, port-B
will not echo incoming characters. if bit 2
is set to 1, port-A will not echo incoming
characters.

Bit 3 - if new axes names are entered in
parameters 520 - 532, they appear on the
machine display screens. To have the
‘new names apply to program entry as
well, set bit 3 of parameter 540 to 1.

CHAPTER 6: THE PARAMETER MODE

541

-126-

Bit 4 - Execution of a command file called
"Autoexecute". If bit 4 is setto a 1, and
the autoexecution file exists, it will run
upon reset or power-up when <ENTER >
is pressed.

Enables errors and other statuses to be out-
put through the RS-232 ports or 1/O channel
to the host computer. Output may be ASCII
text as seen on the Status Line of the CRT,
or as ASCIl "code nnn", where the code rep-
resents the condition being reported. (The
error codes and their associated text are
listed in the Unidex 16 Hardware Manual.

00000001 - K bit O is set to a 1, send "code nnn" to
port-B.

00000010 - K bit 1 is set to a 1, send "code nnn" to
port-A.

00000100 - MK bit 2is set to a 1, the MSG command
message will be sent to port-B

00001000 - If bit 3 is set to a 1, the MSG command
message will be sent to port-A

1000nnnn - if bit 7 is set to a one, the hexadecimal
representation of the error code will be
sent to the I/O address $700. The
status of the first 4 bits is irrelevant.

Also available through this parameter is a
shorthand form of the Message Command
(MSG) called the Command with Service Re-
quest (CMDS) command. (See chapter 10
for details on these commands.) The port is
chosen by setting bits in this parameter. Bit
4 is set to a 1 to choose port-B. Bit §is set
to a 1 to choose port-A. The CMDS com-
mand is different from the CMD or MSG

542

5560

551

552

CHAPTER 6: THE PARAMETER MODE

command in that it waits for a Service Re-
quest character to be received before going
to the next biock. Bit 6 determines if the
input from the port will be ASCIl (set to 0) or
Binary (set to 1).

if the Command (CMDS) command is sent A
to & host computer through port-A and/or

port-B, a Service Request is expected by

Unidex 16 before proceeding to the next

block. The Service Request character is

specified by parameter 542, which is set to

ones and zeroes to represent the desired

character.

Password protection for the edit mode D

1-99999999 - Designates the password that will
be required to enter the edit mode

0- No password will be required to enter the
edit mode
Password protection for the file mode D

1-99999999 - Designates the password that will
be required to enter the file mode

0- No password will be required to enter the
file mode
Password protection for the machine mode D

1-99989999 - Designates the password that will
be required to enter the machine
mode

-127-

i]

CHAPTER 6: THE PARAMETER MODE

0 - No password will be required to enter the
machine mode
560 Password protection for the parameter mode D

1-99999999 - Designates the password that will
be required to enter the parameter

mode
0- No password will be required to enter the
parameter mode
561 Password protection for the test mode D

1 -99999999 - Designates the password that will
be required to enter the test mode

0- No password will be required to enter the
test mode

562 Password protection for the system (cannot D
run a command file without the designated

password if this parameter is enabled)

1 - 99999999 - Designates the password that will
be required to execute a command
file

0- No password will be required to execute a
command file

TYPE: A - BINARY NUMBERS (0 or 1)
B - DECIMAL NUMBERS RANGING FROM 0 - 255
C - DECIMAL NUMBERS RANGING FROM 0 - 65,535
D - DECIMAL NUMBERS RANGING FROM 0 - 16,000,000

-128-

CHAPTER 6: THE PARAMETER MODE

SECTION 6-3 INHIBIT/ENABLE KEY

When the Inhibit/Enable key is switched to inhibit, no information
may be entered or stored in the parameter mode, although you may
still read data from the CRT.

If you try to store data, the STATUS line shows:
*** STATUS: .EEPROM Inhibited, can’t store data ***

Switch to the enable function in order to store parameter informa-
tion.

NOTE: Remember to press <RESET > after changing parameter values to
reinltialize Unidex 16.

-129-

CHAPTER 7: THE TEST MODE

When Unidex 16 is turned on it automatically does a self-test, test-
ing the Battery, RAM, ROM and EEPROM.

If the CRT displays Checksum Error for RAM when Unidex 16 is
turned on, enter the test mode. Press [.SV/RAM] to see which
program is causing this error. The status line will display the program
name and type. Example:

*** CHECKSUM ERROR: CIRCLE .PP ***

If you want to test Unidex 16 while running a parts program, enter
the single mode and wait for all movement to stop before entering the
test mode. Otherwise, Unidex 16 will finish the current block of
program, set itself to the single mode and then do the test function.

SECTION 7-1 TESTS

Pressing the soft key [test] displays:

| .RAM SV/RAM .ROM .EEPROM end |

A. .RAM

When you press [.[RAM] and < ENTER >, the status line will warn:

-131-

CHAPTER 7. THE TEST MODE

*** STATUS: Waming!! Destroy all /mms files?? ***

The soft key command area will display:

| no yes

If you press [yes] the user memory will be checked and cleared. All
programs stored in the Unidex 16 internal memory will be erased.

If you press [no] the user memory will not be checked and cleared.
The soft key command area will revert to the first test mode display.

B. .SV/RAM

Pressing [.SV/RAM] yields:

[end

If you press < ENTER > at this point, the user memory will be
checked but the internal memory will not be erased (no programs will
be lost).

As mentioned previously, if a Checksum Error was displayed on the
CRT upon power-up, enter the test mode, press [.SV/RAM] and
<ENTER >. The status line will let you know which program has a
problem and requires editing. It will display the program name and

type.

Pressing [end] will take you to the system level of softkeys again.

-132-

CHAPTER 7. THE TEST MODE

C. .ROM (.EPROM)

Pressing [.[ROM] and < ENTER > displays:

| end |

A checksum test will be performed on the ROM. Any problems
will be relayed to you via the STATUS line. If this occurs, call
Acrotech, Customer Service Department (see chapter 14, Service and
Repair for phone number and address).

[End] will take you back to the original screen of system softkeys.

D. .EEPROM

Pressing [. EEPROM]} and <ENTER > tests the EEPROM. Any
problems will be relayed via the STATUS line. If this occurs, call
Aerotech, Customer Service Departiment (see chapter 14, Service and
Repair for phone number and address).

-133-

CHAPTER 8: THE PASSWORD MODE

The Unidex 16 system may be protected from unauthorized opera-
tion by the use of passwords. There are passwords available for each
mode of operation. Each mode’s password is set up in the parameter
mode. The following list gives the parameter number for each mode.

MODE PARAMETER
Edit 550
File 551
Machine 552
Parameter 560
Test 561
System 562

Any of these parameters may be left at a value of (0 if password
protection is unnecessary. A valid password is any decimal number
from 1 to 99999999. You may choose the same password or a dif-
ferent one for each mode. The "System” password will prevent the ex-
ecution of a command file.

The soft key [password] comes up at the system level display of soft
keys:

| edit file machine parameter test password |

If any mode is protected by a password, you must press [password]
now to access that mode. You will see:

[log-off log-on end |

-135-

CHAPTER 8 THE PASSWORD MODE

Press [log-on] and <ENTER >. The status line will read:
STATUS : ENTER PASSWORD :

Enter the password now. You will see an asterisk (*) each time a
character is entered. When you are finished, press {end] and
<ENTER >.

You may now enter the mode of operation as usual. When you are
finished, re-enter the password mode and press [log-off]. This clears
the user password register so that no protected modes may be accessed.
If you neglect to do so, an unauthorized person may access a normally
protected mode.

If you try to enter a protected mode without entering the correct
password, the status line will display:

| STATUS : current password not valid for this function

|

If you make a mistake when entering password data, press zero
eight times (which enables you to start with fresh data), or press
<ENTER > and start over again.

-138-

CHAPTER 10: PROGRAMMING LANGUAGE

The programming language that is built into all basic Unidex 16 sys-
tems is composed of three parts:

1. A subset of RS-274-D code words
2. A subset of RS-447 commands
3. Aerotech developed extensions

The syntax of the new programming language falls into two
categories:

TYPE 1. Machine program data in RS$-274-D-like format.

TYPE 2: Machine set-up, initialization or operation parameters in
RS-447-like format.

Both types 1 and 2 conform to the Electronic Industries Association
(EIA) standards and can be readily transferred to other NC machines
with minor modifications.

In the following text, the term "codeword" will be used to indicate
type 1 (RS-274-D) format.

The term "command"” will be used to indicate type 2 (RS-447) for-
mat.

NOTE: When discussing codes and commands, the term "modal” is en-
countered. When a type 1 code or type 2 command is modal, it is
set until another code or command from the same group Is issued

-149-

CHAPTER 10: PROGRAMMING LANGUAGE

to reset It. 1f a second command does not reset it, k will stay set for
the duration of the program.

Default commands are those that exist upon power up. They may
be changed, but are in effect once the system is reset or powered up
again.

SECTION 10-1 TYPE 1 CODEWORDS - RS-274-D _

The basic type 1 codewords foliow the RS-274-D format. In
general, all Unidex 16 motions and outputs are programmed in this
format.

The motion codewords are:

Pimary - XY ZIJKLCDGF
Secondary - UVWPQROABHE

The primary codewords are those which apply to the X, Y, Z axes.

The secondary codewords are those which apply to the U, V, W
axes. These additional three axes can be added to Unidex 16 as an op-
tion.

The output codewords are:
MST
The program can begin with a (%) sign followed by a title line.
Anything written between that symbol and the first < ENTER > isig-

nored by Unidex 16. Therefore, a program name or a comment may
be inserted in this block.

The following subsections will define the various Type 1 codewords.

-150-

CHAPTER 10: PROGRAMMING LANGUAGE

NOTE: The Type 1 (RS-274-D) format requires a space between each com-
mand (for instance G2 G17 [1.).

A. N CODEWORDS

N codewords are used as line numbers. They are not necessary in
the programming or running of Unidex 16, but may be useful when
editing a program. If needed, enter them as described in chapter 3,
The Edit Mode.

If block delete slashes (/) are included in a program they may be
preceded by line numbers, but must be entered before any other com-
mands when used. For example, /N100 X1. or N100/ X1.

(Unidex 16 has a softkey command {renumber] which will automati-
cally number your program blocks for you.)

B. G CODEWORDS

The G codewords are also known as Preparatory Functions since
they set up the mode of motion control before an axis movement oc-
curs.

A summary of the G codes used when programming Unidex 16 is as
follows: |

GO/HO Point to point positioning at rapid traverse rate. The rapid
traverse rate is determined by the parameter setting (see
chapter 6). This command should only be given when the
tool is clear of the workpiece and not in a position to do
any cutting or drilling.

G1/H1 Linear interpolation produces a straight line in which the
feedrate is taken as the vectorial velocity of all axes com-

-151-

CHAPTER 10: PROGRAMMING LANGUAGE

bined. All axes will start and stop simultaneously. If you
want both groups of axes (X,Y,Z) and (U,V,W) to move
together, you must use the SYNC command (see section
10-2).

A command block of :
G1X4.0 Y3.0 F50.0

will produce a straight line from the initial position to the X +4,
Y +3 coordinate position, at a feedrate of 50 inches (or millimeters)
per minute.

G2/H2 Two dimensional arc, clockwise interpolation.
G3/H3 Two dimensional arc, counterclockwise interpolation.

NOTE: BOTH AXES INVOLVED IN THE CIRCULAR CONTOUR MUST
HAVE THE SAME RESOLUTION.

To indicate which two axes are to be involved in the circular inter-
polation, enter a G17, G18 or G19 command. If you do not enter one
of these, Unidex 16 uses the default codeword G17 (X and Y axes).
For details see G17/H17, G18/H18 and G19/H19 codewords in this
section.

For example, programming:

G91 G2 X6.0 Y0 13.0 JO
G2 X-6.0 YO0 I-3.0 JO

will produce a circle with a radius of 3 inches (or millimeters). Since
G17, G18 or G19 was not entered, Unidex 16 will default to G17,
therefore cutting on the X,Y plane.

152

NOTE:

G4

G8/H8

G9/H9

G17/H17

CHAPTER 10: PROGRAMMING LANGUAGE

GO/MHo, G1/H1, G2/H2 and G3/H3 all befong to the same group of
modal codewords, i.e., one will stay in effect until canceled and
replaced by another from this same group. G1/H1 is the default
code of this group.

Dwell. This command should be followed immediately by
an F codeword (Fnnn.n) which programs the dwell dura-
tion in seconds (ranging from 100mS to 999.9 seconds).
Dwell programming code must occupy a block of its own.
If the Fnnn.n entry is in decimal form, the dwell will be in
seconds. If in integer form, it will be in tenths of seconds.
The following example will produce a dwell of .5 second:

G4 F5

Turn on acceleration function. This codeword will cause a
gradual acceleration before the desired speed is attained.
Only the block which contains this word is effected.
However, if the acceleration parameter in the EEPROM
is set (see chapter 6) the function will be performed
automatically for every block.

Turn on both accel/decel functions. This codeword will
cause a gradual acceleration before the desired speed is at-
tained and a gradual deceleration before the end of mo-
tion. Only the block which contains this word is effected.
However, if the accel/decel parameter in the EEPROM
is set, the function will be performed automatically for
every block. When feedrate threshold is exceeded,
accel/decel will automatically turn on. See section 6-2 for
these parameter settings.

Combines X and Y axes (G17) or U and V axes (H17) as
on the same plane for the execution of circular interpola-
tion. The Z (or W) axis can make a linear interpolation at

-153-

CHAPTER 10: PROGRAMMING LANGUAGE

G18/H18

. G19/H19

NOTE:

Y

the same time. Helical interpolation (spiral) is done by
doing the circular and linear moves simultaneously.

Combines Z and X axes (G18) or W and U axes (H18) as
on the same plane.

Combines Y and Z (G19) or V and W axes (H19) as on
the same plane,

The G17/H17, G18/H18 and G19/H19 codes determine which two
axes will be paired together for circular interpolation. Each pair of
axes can be programmed to make a circular move. Give a G2 or
G3 codeword for circular interpotation (CW or CCW). Then give the
G17, G18 or G19 to specify which two axes are to be involved In the
move. The following diagram Hlustrates the direction of rotation on
various planes.

G17/H17, G18/H18 and G19/H19 form a modat group {one stays set
until canceled by another).

G17/H17 is the default mode upon power-up.

Both axes involved In a circular contour must have the same resolu-
tlon.

G17 X G18 7 G19

H17 g H18 w Hi9

;\\ CCW (N cCW ;\\ ccwV

-154-

NOTE:

G23/H23

G24/H24

NOTE:

G40

Gat

G42

CHAPTER 10: PROGRAMMING LANGUAGE

The motion of the tool should be viewed from the positive (looking
negative) perpendicular axis.

Corner-rounding mode

Cancel corner-rounding mode

G23 Is the command code that selects comer rounding wheraby
the motors get their next block of commands while they are still
completing execution of the previous block. Normally, under G24,
as the motors near completion of a command, they slow down ap-
preciably. The corner rounding command, G23, keeps the motors
running at a near constant velocity as they start to execute the next
command, just before they have completed the previous one. Al-
though there Is a slight loss of accuracy using corner rounding,
movements are performed more rapidly since the motors do not
have to decelerate to zero speed before executing the next com-
mand. The result is a smooth, slightly rounded corner or "fillet" in
the sections where successive cuts meet. This Is especially useful
for circular contouring. G24 is the codeword for norma! positioning
of the motors whereby they compiete their previous commands and
come to a stop before starting to execute commands in the next
block. The greatest possible accuracy is achieved with normal
posltioning of the drives.

G23/H23 and G24/H24 form a modal group of codewords.
G24/H24 Is the default mode at power-up.

Cancel cutter compensation/offset. Turn off cutter radius
compensation.

Cutter compensation - left. Cutter is offset to the left side
of the workpiece. Left is relative to the direction in which
the cutter is moving.

Cutter compensation - right. Cutter is offset to the right
side of the workpiece. Right is relative to the direction in
which the cutter is moving.

-155-

CHAPTER 10: PROGRAMMING LANGUAGE

NOTE 1

NOTE 2:

G70/H70

G40, G41 and G42 form a modal group of codewords. G40 is the
default mode at power-up.

For more on ICRC, refer to section 10-3.

English programming. All of the dimensional and offset
codewords represent measurement in inches. The
decimal point is assumed to be 4 spaces to the left. Enter-
ing "X1" indicates a move of 0.0001 inch to Unidex 16.
(Since the decimal point was not entered, it is assumed to
be 4 places to the left.) Entering "X1.0" indicates a move
of 1 inch to Unidex 16. (Since the decimal point was
entered, its placement is not assumed by Unidex 16.)

The feedrate entries are limited to 5 digits (Fonnn.n).
Four of the digits are assumed to be before the decimal
point and one after. The largest number you may enter as
a feedrate in English programming is 9999.9.

In the following example, the left hand column contains
programmed feedrates. The right hand column contains
the feedrates as interpreted by Unidex 16.

PROGRAMMED ACTUAL

FEEDRATE FEEDRATE
F1 FO000. 1
F1.0 F1
F12345 F1234.5
NOTE: Programming resolution for G70 is .0001.

G71/H71

-156-

Metric programming. All of the dimensional and offset
codewords represent measurement in millimeters. The

CHAPTER 10: PROGRAMMING LANGUAGE

decimal point is assumed to be 3 spaces to the left. Enter-
ing "X1" indicates a move of 0.001 millimeter to Unidex
16. (Since the decimal point was not entered, it is as-
sumed to be 3 spaces to the left.) Entering "X1.0" indi-
cates a move of 1 millimeter to Unidex 16. (Since the
decimal point was entered, its placement is not assumed
by Unidex 16.)

The feedrate entries are limited to 5 digits (Fonnnn). All
five digits are assumed to be before the decimal point.
The largest number you can program as the feedrate in
metric programming is 99999. Following is a list of
programmed vs. actual feedrates:

PROGRAMMED ACTUAL

FEEDRATE FEEDRATE
F1 F1.0
F1.0 F1.0
F12345 F12345
F1234.5 F1235 (rounds off
the 5)
NOTE: Programming resolution for G71 is .001.

G70/H70 and G71/H71 form a modal group. The default
mode is selected by a parameter setting, and depends on
the type of baliscrew installed.

CANNED CYCLE COMMANDS

The following canned cycles are intended for machine tool applica-
tions, and work in the G17 (X/Y plane) mode only. For more on
canned cycles, refer to chapter 11.

-157-

CHAPTER 10: PROGRAMMING LANGUAGE

G76

G77

G78

NOTE:

G80

G81

G82

G83

G84

G85

NOTE:

-158-

Circular peck drilling canned cycle. Dirills a series of holes
in a circle. Radius of the circle, angle of the location of
the first hole, number of holes and drilling depth are all
user-programmable.

Circular pocket milling canned cycle.

Rectilinear pocket milling canned cycle.

The G786, G77 and G78 canned cycles do not form a modal group.
Each from this group cancel automatically after execution.

Cancel canned cycle G81 to G85.

Peck drilling canned cycle.

Peck drilling with spindle stop canned cycle.
Incremental peck drilling canned cycle.

Peck drilling with spindle reverse canned cycle.

Peck drilling with slow return canned cycle.

G80 to G5 form a modal group of codewords. In addition, once
any canned cycle Is activated, G0, G1, G2 and G3 codewords will
be disabled. GO0, G1, G2 and G3 will not resume functions until after
Gi80 cancels the canned cycle.

G80 is the default mode at power-up.

G9s8

G99

NOTE:

G90/HS0

G91/H91

CHAPTER 10;: PROGRAMMING LANGUAGE

Return to initial point during canned cycle G81 to G85.

Return to temporary return (R) point during canned cycle.

G98 and G99 are modal codewords. They are assoclated only with
canned cycles G81 to G85.

G98 is the default mode at power-up.

Absolute programming. All data input is in the form of ab-
solute dimensions. All dimensions are with respectto a
floating zero, which is defined by the G92/H92 codeword
or the default X0, YO0, Z0 position, which is machine
"home".

In the absolute mode (G90), an axis moves to the loca-
tions indicated by the axis commands. For example, if you
wanted to move the tool along the X axis to the +3.0000"
position and it was presently located at the -3.0000" posi-
tion, just program X3.000. The absolute position registers
will keep track of the motor position.

Incremental programming. All data input is in the form of
incremental dimensions. In the incremental mode (G91),
the axes move the distance indicated, relative to the
present position. For example, if you wish to move the
tool along the X axis from the -3.000" position to the
+3.0000" position, you would have to program X6.0000.

G90/H90 and G91/H91 belong to the same group of
modal codewords. The default mode at power-up is
G91/H91.

=159-

CHAPTER 10: PROGRAMMING LANGUAGE

-160-

G92/H92 Preload axis relative coordinate registers to desired

values. The G92 (for X,Y,Z axes) or H92 (for U,V,W
axes) codeword should be followed immediately by the
axis and value to be loaded. These codewords should oc-
cupy a block of their own. An example would be:

G92 X0 Y0 Z0

This will define the current XYZ relative coordinate to be
0,0, 0. Therefore, a floating coordinate (floating home) is
established in this example. All axes moves will now be in
reference to this position.

C. X,Y,ZAND U, V, W CODEWORDS

These are dimensional codewords. They describe the axis to be

moved and the distance (or location) desired, When absolute program-
ming is used (G90/H90), these words program the location to which
axes are to be moved. When incremental programming is used
(G91/H91), these words program the distance by which the axes will

be incremented with the move.

The highest number that may be programmed for an axes value is

+ 8388607 and may be specified in inches (G70) or millimeters
(G71). (Refer to the G codes G70/H70 and G71/H71 of this section.)

1.

You may also program an axis to a name other than X, Y,
Z, U, V or W, The new name MUST consist of two charac-
ters, both being any upper case alphabetic character (A -
Z).

Axis names are X, Y, Z, U, V and W by default. The user
may enter new names in the EEPROM parameters #520 -
#532. These must be entered as decimal numbers. (The
upper case letters A - Z correspond to decimal numbers

D.

CHAPTER 10: PROGRAMMING LANGUAGE

01 -26.) Any other number is invalid and will blank out
that position on the display. (Which can be used to clear
the display if the axis does not exist in the system.) After
reset, the new axis names will be valid and will be dis-
played in the machine mode. To make the new axis name
apply to program entry as well, bit 3 (from right) of
parameter #540 must be settoa 1.

All program commands may use the new axis names in
place of X, Y, Z, U, V and W. (However, a program may
alsouse X, Y, Z, U, V and W, regardless of what the ap-
propriate axis has been named. It is now the
programmer’s choice.) An example of changing an axis
name is as follows:

Change label of X axis to "AB" by entering
00102 into parameter #520, and then press
[store].

The left-most zero is ignored. The "A" is represented by
01, and the "B" is represented by 02.

(Set bit 3 of parameter #540 to a 1 to make the new label
apply to program entry as well.)

L J, KAND P, Q, R CODEWORDS

These are interpolation parameters parallel to the X,Y,Z (or
U,V,W) axes respectively. The value may be positive or negative.
Only two axes from the X)Y,Z group or two axes from the U,V,W
group may be programmed in a circular interpolation at one time
using G17/H17, G18/H18 or G19/H19. The third axis may make a
linear move at the same time.

~161-

CHAPTER 10: PROGRAMMING LANGUAGE

In circular interpolation, LJ,K,P,Q or R program the center of the
arc (radius). These codes program the offset vector, which is the
signed incremental distance from the beginning of the arc to the arc
center, whether Unidex 16 is in the absolute (G90/H90) or incremen-
tal (G91/H91) mode (see figure 10-1). Figure 10-1 may be

programmed as:
G2X2.0Y-1.011.0 J-.1
+Y
(-+) (+.4)
COORDINATES

!
+X

b
/ (‘")\ (Xyj—— End Position

Current Position
Center point of circle
(---) ""--)

FIGURE 10-1: CIRCULAR INTERPOLATION

The offsets for each axis are:

AXIS OFFSET
X |

Y J

Z K

U P

\ Q

W R

-182-

CHAPFPTER 10: PROGRAMMING LANGUAGE

Unidex 16 can be programmed to do a complete circle in one com-
mand block. Only direction, center point and axes plane must be
specified. For example:

G2 G17 11. J1.

The above codewords specify a CW circle (G2) on the XY plane
(G17). The ending point is assumed to be 0 (the same as the starting
point). The center point is established by the offsets of I and J. In the
sample command above, I1., J1. specifies the center point as the in-
cremental distance of (1., 1.) from the starting point (0,0).

The following contour would result from the above command:

~

(0.0)

Btarting
and Ending
Point

An example of a CCW circular contour on the ZX plane would be:
G3G18K251-2.5
An example of a CCW circular contour on the VW plane would be:

H3 H19 Q-2. R-2.

-163-

CHAPTER 10: PROGRAMMING LANGUAGE

-164-

E. F/E CODEWORDS

F/E defines the feedrate in inches (G70) or millimeters (G71) per
minute. F/E programs the vectorial feedrate of a move. This applies
to linear, circular and helical moves.

F is for the X, Y and Z axes and E is for the U, V and W axes.

In English programming (G70), feedrate entries are limited to 5
digits. The largest number that can be programmed as a feedrate in
English programming is 9999.9. The entries are seen by Unidex 16 as
Fnnnn.n, with four digits to the left of the decimal point and one to
the right. In the following example, the left hand column contains
programmed entries. The right hand column contains what Unidex 16
interprets those feedrates to be.

PROGRAMMED ACTUAL

FEEDRATE FEEDRATE

F1 F.1 (sees entry as
00001)

F12345 F1234.5

F1.0 F1.0

F50 F5.0 (sees entry as
00050)

In metric programming (G71), feedrate entries are also limited to 5
digits. The largest number that can be programmed as a feedrate in
metric programming is 99999. The entries are seen by Unidex 16 as
Fnnnnn, with all five digits to the left of the decimal point (none to the
right). In the following example, the left hand column contains
programmed entries. The right hand column contains what Unidex 16
interprets those feedrates to be.

CHAPTER 10: PROGRAMMING LANGUAGE

PROGRAMMED ACTUAL

FEEDRATE FEEDRATE

F1 F1 (sees entry as
00001)

F12345 F12345

F1234.5 F1235 (rounds off
the 5)

F1.0 F1

F50 F50 (sees entry as
00050)

Whenever programmed feedrate exceeds 110% of the achievable
rate, controls stop and error information is displayed.

L, C, D AND O, A, BCODEWORDS

For the X,Y,Z axes, to define the starting point of the circle, define
L as the radius and define C as the angle of the starting point of the
circle, measured from the X-positive (G17), Z- positive (G18) or Y-
positive (G19) direction. Define D as the angle of the ending point of
the circle, measured from the same direction. Both the Cand D
codewords are in degrees. If the minutes and seconds of a degree are
required, enter them as fractions. Example: '

112+2/60+16/360
The angle can also be entered as a decimal. For example:
112.2435

For the U,V,W axes, to define the starting point of the circle, define
O as the radius and define A as the angle of the starting point of the
circle, measured from the U-positive (H17), W- positive (H18) or V-
positive (H19) direction. Define B as the angle of the ending point of

-185-

CHAPTER 10: PROGRAMMING LANGUAGE

the circle, measured from the same direction. Both A and B
codewords are in degrees.

See figure 10-2 for an example of polar coordinate programming.

G2 L1.0 C140 D45 F50.0

End

|
Current | Position
Position \ | /
|
LY

Center Point
of Circle

FIGURE 10-2: POLAR COORDINATE PROGRAMMING

In figure 10-2, an arc of 95 degrees width is shown. L1.0 specifies
the radius, C140 the angle of the starting point and D45 the angle of

the ending point.

-166-

CHAPTER 10: PROGRAMMING LANGUAGE

G. S CODEWORDS

The spindle speed function programs the spindle speed in RPM:s for
once-per-rev spindle types. For details on how to program the other 7
spindle types, and the maximum and minimum speeds allowed, refer
to chapter 6, section 6-2, the 400 parameter group.

S codewords, when executed, produce cutput on the M or S output
bus, depending on the spindle type.

For different spindle types and the parameters that apply to each
type, refer to chapter 6, The Parameter Mode, (parameter 400 group).

H. T CODEWORDS

The tool table is saved in a separate file. If the Aerotech Tool
Changer is used, then the following apply:

TOO Removes tool offset.
TO1 to T25 Insert tool with corresponding number. No offset.
TO1nn to T25nn Insert tool with corresponding number. The nn

specifies offset number in the tool file. For ex-
ample, TO113 would be tool #1 with offset #13 in

tool file.

T26 Initiate tool changer operation.

T27 Return any tool.

T28 Reset carousel positions.

T31 Reconfigure carousel.

T41 to T65 Carousel rotates to selected tool (40 plus the tool
number).

To9 Set current tool offset and diameter to 0.

T99nN Set current tool offset and diameter to the one

specified in offset nn (Onn) in the tool file.

-167-

CHAPTER 10: PROGRAMMING LANGUAGE

-168-

M CODEWORDS

M codes are also called M function outputs. When executed by
Unidex 16, the number following the letter M will be output onto the
M,S.T function bus. Data is output as a 2 digit code, and the M-
strobe signal will go active after the data appears. Then Unidex 16
will wait for and debounce an outside acknowledge signal. If this
handshake signal comes back within a specific time, Unidex 16 will
proceed and execute the following program. All signals are TTL level
and all these signals are on the J4 connector of the CRT board.
Parameters exist for the strobe length and length of time Unidex 16
will debounce the signal. Other parameters exist to select whether the
function can be partially or totally selected (refer to chapter 6 for
details).

There are special M codes that carry special functions. They are:

MO
M1
M2
M30
M47

How these special M codes are handled is decided in parameter
#442. It can be set to perform its software function and output data to
the bus, be ignored completely, perform its software function and out-
put no data, or perform no software function but output data to the
bus with or without a handshake. See chapter 6, parameter #442 for
details.

Mo Program stop. After completion of all other words in the
block, MO will be output if enabled by parameter. Press
<CYCLE START > to continue the program.

CHAPTER 10: PROGRAMMING LANGUAGE

M1 Optional (planned) stop. When M01 is output, program
execution will terminate, if the Optional Stop switch on
the front panel is on. Unidex 16 resumes execution once
the switch is turned off and < CYCLE START > is

pressed.

M2 End of program. After completion of all other commands,
M(2 will be output. <CYCLE START > will restart the
program,

M30 End of data. Execution will stop when M30 is en-

countered. <CYCLE START > will restart the program.

M47 Return to program start. When M47 is output, program
execution will continue from the start of the program.

BLOCK DELETE

The block delete switch on the front panel gives you the option,
when running a parts program, of skipping certain blocks of program.

When editing the parts program, precede these optional blocks with
a slash (/). When running this program in the machine mode, if the
Block Delete Switch is on, these blocks will be omitted. If the switch
is off, they will not be omitted. Example:

G1X2.Y3.
1G1 X1.Y1.

In the above example, the second block will be skipped if the Block
Delete Switch is on.

-169-

CHAPTER 10: PROGRAMMING LANGUAGE

-170-

K. USER COMMENTS

Comments may be included after program blocks to explain or
clarify commands. This greatly improves the documentation of a
program.

Place a semicolon (;) after the command block and then enter your
comments. Any alphanumeric character or special symbol, except a
percent (%) sign , can be used. Any entry listed after the semicolon is
ignored by Unidex 16 when running the program.

SECTION 10-2 TYPE 2 COMMANDS - RS-447 FORMAT

Since both type 1 and type 2 codes are included within the same
program, parentheses are used to differentiate between the two. The
"(" is used to signify "control in", and the ")" is used to signify "control
out". Enclosing your type 2 commands in parentheses enables Unidex
16 to distinguish between type 1 codes and type 2 commands within
the parts program.

NOTE 1: Any RS-447 (type 2) command must occupy its own block within a
parts program.

NOTE 2: Intype 2 commands, the command and its options are separated
by commas, not spaces.

The type 2 commands are:

Go home, REF or HOME
Mirror image, MIR
Jump commands, JUMP
Define entry point, DENT
Repeat loop, RPT

moo®>

KCALWIOIOZIrX-"IOMm

CHAPTER 10: PROGRAMMING LANGUAGE

Call subroutine, CLS
Define subroutine, DFS
Define Library subroutine, DFLS
Abort subroutine, ABTS
Scaling factor, SCF
Turn on or off scaling, SCO
Display message on CRT, MSG
Message to Iinterfacing Equipment, CMD & CMDS
Display Page, DISP
Write to Datafile, DATA
Six axes synchronized contouring, SYNC
Programmable accel/decsl time constant, ADTC
Interrupt, INT or CIRQ
UMFO
UMSO
Safe Zone, ZONE
Cutter compensation, CCP

For information on all advanced functions, refer to chapter 12,
VARIABLES AND MATH PACKAGE.

GO HOME, REF or HOME

Two commands send any or all axes to the home position, REF and
HOME. Example:

(REF,X,Z)

This command example would send X and Z axes home simul-
taneously at a feedrate set in the EEPROM (parameter mode). This
feedrate can be adjusted by using the Manual Feedrate Override
(MFO).

-171-

CHAPTER 10: PROGRAMMING LANGUAGE

.:| T72-

The axis will first move to the end of travel and then move out until
the marker is found. Then it will offset a distance (Home Offset — if
set as explained in chapter 6, The Parameter Mode) to reach the
home position. At this point, the coordinate registers will be cleared
to zero.

The HOME command is identical to REF. For example:

(HOMEX,Y,Z,U,V,W)

MIRROR IMAGE, MIR

Mirror Image is available on Unidex 16 for all six axes. To program
Mirror Image, enter X1, Y1,Z1, U1, Vior Z1 after MIR. Example:

(MIR,X1,Y1)

This will turn on the mirror image for both the X and Y axes. Any
axis not specified by this command will not be mirrored.

To turn MIR off, program the axis being mirrored followed by a
zero. Example:

(MIR,Y0)

This will turn off the Mirror Image for the Y axis. All other axes are
not effected. MIR is a modal command.

Mirror, as well as the scaling function and factor (discussed later),
operate in both the incremental as well as absolute mode. However,
when in the absolute mode, it is the user’s responsibility to remember
that these functions are always in reference to the software home (es-
tablished by G92).

CHAPTER 10: PROGRAMMING LANGUAGE

Also, when enabling an Interrupt (discussed later in this chapter) or
a User-programmable Softkey (see User-Programmable Softkey in
chapter 13, Unidex 16 Options), the program may (depending on inter-
rupt type) skip the rest of the program block, remember current
machine position and go to a subroutine or entry point. The user must
re-establish the software home before mirror or scaling is reenabled
in such cases, because when Unidex 16 returns from the subroutine or
entry point, it remembers the current machine position. Therefore,
the mirror and scaling are no longer in reference to the prior software
home.

JUMP COMMAND, JUMP

The jump command (JUMP,nnnn) or (JUMP,nnnn,condition) will
cause program execution to jump to and continue from a specific line
(DENT,nnnn).

The place to which to jump is defined by a Define Entry command
(DENT). The Jump and Define Entry commands must match. Ex-
ample:

JUMP,AAT1 (Jump to entry point AA11)
DENT,AA11 (Defined as entry point AA11)

The entry point name may be from 2 to 4 characters in length. The
first two characters following JUMP are letters A-Z. The second two
are alphanumeric, A-Z or 0-9.

The (JUMP,nnnn) command should occupy its own block of
program.

An example of the (JUMP,nnnn,condition) command is:

(JUMP,AA12,$XAP.GT.1000)

-173-

CHAPTER 10: PROGRAMMING LANGUAGE

-174-

This causes program execution to jump to entry point AA12 when
the value of the current X axis absolute coordinate is greater than

1000.

The defined entry point for a jump can be replaced by a variable.
Instead of programming (JUMP,nnnn), (JUMP,#VARn) can be
entered. The entry point can then be defined by the variable. Ex-

ample:

VAR1=ENT1
(JUMP,#VAR1)
(DENT,ENT1)

This is the same as:

(JUMP,ENT1)
(DENT,ENT1)

NOTE: DO NOT DUPLICATE NAMES WHEN DEFINING JUMPS AND
SUBROUTINES.

The # sign before the variable lets Unidex 16 know that the vari- '
able defines the entry point and is not simply the name of the entry

point.

DEFINE ENTRY POINT, DENT

This command defines an entry point (DENT,nnnn) for a jump com-

mand. The entry point name may be from 2 to 4 characters in length.
In (DENT,nnnn) the first two characters are letters A-Z. The second
two characters are alphanumeric, A-Z or 0-9. An example of a define

entry command would be (DENT,AA11).

This string should be a unique identification that is not used
anywhere else in the program.

CHAPTER 10: PROGRAMMING LANGUAGE

The (DENT,nnnn) command should occupy its own block of
program.

E. REPEAT LOOP, RPT

The following example shows a repeat loop:

(RPT,8

G1 X1000 Y1000 F100
Z-1500

Z1500

X-1000 Y-1000

)

The loop is placed between parentheses. It will be repeated 8
times, which is defined in the first line. The first line should contain
only RPT and the repeat count number; no other code should be used.
The last line should have the ending parenthesis only.

Repeat loops can also be nested together. Example:

(RPT,10
X1000
(RPT,10
Z-1000
21000

)

)

A repeat function needs 12 bytes of stack, which is taken from the
user-programmable memory. Every time you use this function it re-
quires 12 bytes of memory. It will be put back when the function is

-175-

CHAPTER 10: PROGRAMMING LANGUAGE

-176-

completed. The above example of one RPT function nested inside
another would use 24 bytes of stack.

The number of repeats may be programmed as a variable. See sec-
tion 10-7 for details on this and other advanced programming.

CALL SUBROUTINE, CLS

Rather than program a sequence of commands several times, define
the sequence as a subroutine. Each time this sequence is required
within the program, call the subroutine with a (CLS,nnnn) command.
Example:

(CLS,AB12)

The name of the subroutine is indicated by the nnnn label. The sub-
routine name may be from 2 to 4 characters in length. It should be
defined uniquely by a Define Subroutine or Define Library Sub-
routine command. The first two characters are letters from A-Z. The
second two are alphanumeric characters.

A subroutine may be called with parameters. An example would be
(CLS,nnnn,PARA1,PARA?). Following the name nnnn in this ex-
ample are two parameters. They can be actual values or variables.
The real value or the value located at the variable’s address is passed
into the subroutine. These variables must be defined by DVAR
(define variable) or DSGV (define system global variable) if the sub-
routine is being called from the main program. If one subroutine is
calling another subroutine, these variables must be defined by the call-
ing subroutines’s DFS command or by DSGV. If the "GLOB" option
is used, the variable may be defined by DVAR also. (See chapter 12
for details on variables.) An example of a Call Subroutine with
parameters is:

(CLS,AA23,1245,VAR1)

CHAFPTER 1 PROGRAMMING LANGUAGE

When calling a subroutine (CLS,nnnn), a variable can be sub-
stituted for the name of the subroutine. Example:

VAR1=ENT1
(CLS,#VAR1)
(DFS,ENT1

)
This is the same as:

(CLS,ENT1)
(DFS,ENT1

)
In the above example, # VAR1 tells Unidex 16 that the subroutine
is defined by a variable. This method of defining subroutines allows

for more flexibility of programming, since the subroutine being called
can vary with the value of VAR1.

For details on advanced programming with the use of variables, see
chapter 12.

DEFINE SUBROUTINE, DFS

Every subroutine must be explicitly defined by a (DFS,nnnn com-
mand. Example:

-{77-

CHAPTER 10: PROGRAMMING LANGUAGE

(DFS,AB12

The (DFS) name may be from 2 to 4 characters in length. The first
two characters of nnnn are letters from A-Z. The second two are al-
phanumeric characters. This command should occupy a block of its
own. Example:

) (DFS,TAP1
$500 M3
Z-1000 F200
M5
G4 G0.2
M4
Z1000

)

The DFS command may contain variables, but not actual values.
Variables listed after DFS are variables which are unique to the sub-
routine. (See chapter 12 for an explanation of Global and Local vari-
ables with subroutines.)

The variables listed after a DFS command can assume the same
data as variables in the calling routine (the main program or another
subroutine), or can be unique to the subroutine. For example:

(CLS,NAME,VAR1,VAR2,VAR3)

i

(DFS,NAME,VAR1,VARX,VARY,VARZ)

In the above example, the data of variables VAR1, VAR2 and
VARS3 are passed to variables VAR1, VARX and VARY. Variable
VARZ will equal zero.

~178-

CHAPTER 10: PROGRAMMING LANGUAGE

CAUTION: Variables named by DFS are distinct from those
named by CLS, even if the names are the same. See chapter
12.

Subroutines may be nested together also. Each DFS requires 12
bytes of stack.

Any named variables included in the program require 12 bytes of
stack also. DSGV variables require only 8.

DEFINE LIBRARY SUBROUTINE, DFLS

A library subroutine is the same as a normal subroutine, except a
library subroutine restores machine states. Therefore, a program
which calls a Library Subroutine will not have its modal information al-
tered after the subroutine is executed. Example:

(DFLS,nnnn

The (DFLS) name may be from 2 to 4 characters in length. The
first two characters of nnnn are letters from A-Z. The second two are
alphanumeric characters. These characters cannot be defined
anywhere else in the program. This command should occupy its own
block of program.

The modal codes and commands which will be reinstated after a
library subroutine are:

1. All modal G codes

2. Feedrate (F and E codes)
3. Scaling function and factor
4. Spindle speed

A DFLS requires 64 bytes of user-programmable memory.

-179-

CHAPTER 10: PROGRAMMING LANGUAGE

I. ABORT SUBROUTINE, ABTS

Normally after a subroutine is executed, Unidex 16 returns to the
main program. The ABTS command allows the current level of sub-
routine to be aborted and execution to continue from a place
programmed by the user. Exampie:

(ABTS,nnnn)

The nnnn in the above example is an entry point defined by a
(DENT) command. This command must be located inside the sub-
routine (which is enclosed in parentheses). Example:

(DFS,TEST

(SUMP,ENT1,VAR1.EQ.2)
/(ABTS,ENT2)
(DENT,ENT1)

)
(DENT,ENT2)

The above example controls jumps to the entry point "ENTZ2" at the
end of the subroutine "TEST" rather than going back to the main
program (if the Block Delete Switch is turned off).

ABTS is not a modal command.
An abort subroutine command can refer to a variable rather than an

entry point. Example:

-180-

CHAFTER 10: PROGRAMMING LANGUAGE

VAR1=ENT2
(DFS,TEST

(ABTS,#VAR?1)

)
(DENT,ENT2)

J. SCALING FACTOR, SCF

Unidex 16 allows an individual axis to be scaled up or down by a
scaling factor. Example:

(SCF.X0.33333,Y1.5)

The above example defines the scaling ratio on the X axis to be
0.33333. The scaling ratio must be a positive number, ranging in value
from .00001 to 99.99999. No error will accumulate from move to
move when the scaling factor is turned on.

This command is modal. The default value is a ratio of 1.

NOTE: Scaling does not effect inch to metric conversion. Unidex 16 ex-
ecutes the scaling operation first and then takes care of the inch to
metric conversion.

K. TURN ON/OFF SCALING, SCO

To turn on the scaling, program:

-181-

CHAPTER 10: PROGRAMMING LANGUAGE

-182-

(SCO,1)
To turn off the scaling, program:
(SCO,0)

The scaling function is a modal command. As with the mirror func-
tion mentioned previously, scaling operates in both the incremental
and absolute mode. However, when in the absolute mode, it is the
user’s responsibility to remember that this function is always in
reference to the software home (established by G92/H92).

When enabling an Interrupt (discussed later in this chapter) or a
User-programmable Softkey (see User-Programmable Softkey in
chapter 13), the program may (depending on interrupt type) skip the
rest of the program block, remember current machine position and go
to a subroutine or entry point. The user must re-establish the software
home before mirror or scaling is reenabled in such cases because
when Unidex 16 returns from the subroutine or entry point, it remem-
bers the current machine position and the scaling is no longer in
reference to the prior software home.

DISPLAY MESSAGE, MSG

Messages can be entered into the program and be displayed at the
time of execution. The MSG function can display text or the value of
user’s or system variables on the CRT, port-A or port-B, or any com-
bination of these.

The format for entering messages into your program is:

(MSG, < Pnnnn,variable >,...text...#variable...text...)

CHAPTER 10: PROGRAMMING LANGUAGE

The message cannot contain parentheses (except for the opening
and closing parentheses). Use "<"and ">" instead.

The <Pnnnn> shown above is there for the entry of MSG options.
"P" stands for port and can be A, B, AB or nothing. If nothing is
entered, the message goes to the CRT only.

The "nnnn" portion stands for duration of message in seconds and
may be a BCD number from 0 - 9999.

The <Pnnnn,variable > is an input or option function. At the
time of the program run, the value of this variable may be input by the
user,

The "#variable", as part of the message text, means "display the
value of the variable" and is an output or display variable. At the time
of the program run, the values of these variables will be output.

When editing the program, the message line is two characters
longer than the line displayed on the CRT within the program. There-
fore you must indent each line two spaces to get the message to line
up on the screen.

OUTPUT OR DISPLAY

Following are examples of how to program a message:

1. (MSG.,...text...) - MSG shown on CRT only. Remains
there until < CYCLE START > is pressed.

2. (MSG, <10>,...text...) - MSG shown on CRT only. Will
remain for 10 seconds (or less if <CYCLE START > is
pressed before the time has elapsed).

-183-

CHAPTER 10: PROGRAMMING LANGUAGE

.1“.

10.

11.

(MSG, <0>,...text...) - Skip message function.

(MSG, <A >,...text...) - Same as #1, except also output to
port-A.

(MSG, ,...text...) - Same as #1, except also output to
port-B.

(MSG, <AB >,...text...) - Same as #1, except also output
to ports A and B.

(MSG, <A2>,..text...) - Same as #2, except output data
to CRT and port-A. Will remain for 2 seconds (or less if
< CYCLE START > is pressed before the time has
elapsed).

(MSG, < B2 >,...text...) - Same as #2, except output data
to CRT and port-B. Will remain for 2 seconds (or less if
< CYCLE START > is pressed before the time has
elapsed).

(MSG, <AB2>,...text...) - Same as #2, except output data
to CRT, port-A and port-B. Will remain for 2 seconds (or
less if < CYCLE START > is pressed before the time has

elapsed).

(MSG, < A0>,..text...) - No message to CRT, only output
data to port-A and then continue program.

(MSG, <B0>.,...text...) - No message to CRT, only output
data to port-B and then continue program.

CHAPTER 10; PROGRAMMING LANGUAGE

12, (MSG, < AB0 >,...text...) - No message to CRT, only out-
put data to port-A and port-B and then continue program.

A"C" or "D" option may be used with "A" and/or "B". "C" would
cause the message to be displayed on the screen, but the motion of
the axes would continue, if the display time is set to zero. Feedhold is al-
lowed without loss of the message screen, and < NEXT PAGE > may
be used to view the other screens and return to the message page
while motion continues. Any other functioning key will clear the mes-
sage.

"D" will produce the same function, but the beeper will be disabled.
This may be used in a program loop with a continuously updating mes-
sage, thereby eliminating a continuous beep.

For example:

<MSG,<ABDO>,....text....)

For display (or output) variables, the following variables are valid:

1. #123 - Display 123

2. #VARI1 - Display the value of variable VAR in real con-
stant

3. #H:VAR1 - Display the value of variable VAR1 in
hexadecimal number

4, #C:VAR1 - Directly display byte data, so if VAR1 =
"ABCD", ABCD will be displayed.

5. #C:VAR1,VAR2,VARS3 - Chains messages together. If

VAR1 = "GOOD", VAR2 = " MOR"and VAR3 =
*NING", GOOD MORNING will be displayed.

6. #12 4+ SIN <DEG < ATN < VAR1/VAR?2 - Display the
result in a real constant

-185-

CHAPTER 10: PROGRAMMING LANGUAGE

-186-

- Display
##VAR1 - Display #VAR1

If a message to be sent to port A or port B must contain characters
not available on the front panel of Unidex 16, for instance, ASCII Con-
trol Key <CR > <LF >, the ASCII code (see appendix A) equivalent
to the required characters can be sent within the message.

If our example of carriage return/line feed, <CR > <LF >, is to be
sent to a port, you would send:

(MSG, <A>,...lext...#C:H,0D0A)

Referring to appendix A, you will see the ASCII code hexadecimal
equivalent for CR is 0D and for LF is 0A.

When characters are sent to a port as shown above, they are sent as
4 bytes of data. Therefore, #C:H,0D0A would be sent as:

byte 1 - 00H
byte 2 - 00H
byte 3 - ODH
byte 4 - OAH

To insure the 4 byte format, the first two bytes are sent as zeros, the
second two contain the < CR > <LF> characters.

INPUT OR OPTION VARIABLES

1. (MSG, <A,VAR]L,VAR2,VAR3,VAR4 >.............. text.......)
Sends message (text) to port-A and CRT. Required data
must then be input from the CRT or port-A. The message
will remain until an <ENTER > or a carriage-return
< CR > is received.

CHAPTER 10: PROGRAMMING LANGUAGE

2. (MSG, <B,VARL,VAR2,VAR3,VAR4 >............. text......)

Sends message to port-B and CRT. Required data must
then be input from CRT or port-B. Will remain until an
<ENTER > or <CR > is received. '

3. (MSG, <AB(O,VAR1,VAR2, VAR3,VAR4 >............ text.....)
Sends message to port-A and port-B and receives input
data from port-A or port-B. Because the 0 follows AB,
the CRT does not receive the message or send back input
data.

4, (MSG, <100,VARLLVAR2 VAR3,VAR4 >............... text.....)
Will send message to and receive input data from the
CRT. The time entered (100 here) is meaningless since
an <ENTER > is needed to eliminate the message and
continue the program. In fact, no time need be entered at
all. Entering (MSG, <,VAR1,VAR2,VAR3,VAR4 >,...)
will produce the same result.

The sample message:

(MSG, <A,VAR1,VAR2,VAR3,VAR4 >.......text.....)

will show a message on the CRT and port-A. Data must be input from
the CRT or port-A, terminated by an <ENTER> or <CR>. If
input data is:

12,H,10FA,"Unidex16" <ENTER >

Then:

VAR1 =12, as a real number
VAR2=H,10FA, as a hexadecimal number

-187-

CHAPTER 10: PROGRAMMING LANGUAGE

-188-

VAR3="Unid"
VAR4 ="ex16"

For a longer character string, more VAR commands would have
been necessary, since a variable can only hold 4 characters.

NOTE: In order to handle the variable input function, Unidex 16 must be in
the machine mode.

NOTE: For a real constant which Is greater than 99999999, Unkiex 16 will
dispiay 1.000000E8.

For a real constant which Is less than 0.0000001, Unidex 16 wilt dis-
play 1.0E-8.

M. MESSAGES TO EXTERNAL HARDWARE, CMD/CMDS

Both the CMD and CMDS commands are variations of the MSG
command, discussed in the previous subsection. The two commands
are intended for use with external hardware which requires handshak-
ing. There is no provision in these commands for port selection or
dwell time. The port is selected by setting bits in the EEPROM (chap-
ter 6). In parameter #541, bit 4 from the right is set to a 1 for port B,
bit 5 is set to a 1 for port A. The message text follows the same rules
as a MSG command. A carriage return and line feed are automatical-
ly sent after the text to terminate transmission. If variables are to be
input, they are to be listed in angle brackets before the text (similar to
MSG command).

CMDS is different because it will wait to receive a Service Request
character before going to the next block. This Service Request charac-
ter is set up in parameter #542, which is set to ones and zeros to repre-
sent the desired ASCII character. For example:

(CMD,This is a test)

CHAFPTER 10: PROGRAMMING LANGUAGE

The text "This is a test” will be output to the port(s) programmed in
the EEPROM. A carriage return and line feed is sent after the text.

But for the CMDS command:

(CMDS, This is a test)

the command is the same as above, but a service request must be
received before moving to the next block.

The 6th bit in parameter #541 is set to a 0 if input from the port is
to be ASCII data, and a 1 if input is to be binary data. For example:

Another way to use the CMD command is to store the data in a vari-
able:

(CMD,<VAR1 > ,This is a test)

The data that is sent back will be stored in a variable (VAR1),
similar to a MSG input.

NOTE: Using the Unidex 16 to control one or more Unidex 1 single-axis
controliers is one exampie of an application of these commands.

DISPLAY PAGE FOR MACHINE MODE, DISP

A machine mode page is available for customer defined displays.
This is page eight of the machine mode displays and is activated by the
DISP command in the parts program.

Information may be displayed on this page similar to MSG, but the
programmer can control the location on the screen to which it is writ-
ten by defining the row and column of the first print position, starting

-189-

CHAPTER 10: PROGRAMMING LANGUAGE

from the left. The number of spaces to be cleared can also be
programmed. The length of the data, which may be from 1 to 60
characters, will replace previously programmed data. It writes left to
right, starting from the first position and going the length of characters
programmed. If data overwrites a line, it will wrap around to the next
line.

- There are special commands to clear the entire screen, activate itor
deactivate it. These are shown in the following examples.

(DISP,C) Clear entire display area

(DISP,0) Tum off display page

(DISP,A,1,1,4 TEST) If an "A" follows the DISP command, it
will switch to the display page immediately when the
program containing it is run.

(DISP,1,7,10,TEXT...) Start at the location of Row 1, Column
7, clear 10 spaces and begin.

(DISP,1,7,10,TEXT...,9,1,0,MORE TEXT....)
Same as above, but also write to new new location of Row
9, Column 1, no spaces cleared.

Be sure to clear the appropriate number of characters of the pre-
vious data if it was longer than the new input. If not, something like
the following example could result:

(DISP,1,10,0 First Time)

(DISP,1,10,0 Done)

The first display will show: First Time
The second will show: Donet Time

-190-

CHAPTER 10: PROGRAMMING LANGUAGE

because the extra characters of the first data, "First Time", were not
cleared before the data "Done" was entered.

WRITING TO THE DATAFILE .PP, DATA

The command DATA will permit the parts program to write data to
a dedicated file called DATAFILE .PP in memory. This file may later
be renamed, edited, etc.

This command has the simple form of (DATA,text). The text is
written sequentially to the file DATAFILE .PP in memory. The text
may take the same form as a MSG command in the use of variables.
There is no need or provision to open or close this file in the parts
program because it is done automatically with the use of this com-
mand.

Specific error messages will appear on the status line if a parts
program, which uses this function, is run when the file DATAFILE.PP
already exists (or if the file uses all available memory.)

There are many potential uses for this function, such as making a
log as parts are manufactured, or even creating a parts program from
an inspection routine or through computations. (This program can be
renamed later.)

NOTE: When this function is used, the Unklex 16 must remain in machine
mode. No other modes of operation are permitted. The operator
may leave machine mode, but this command will become disabled
and further writing to the DATAFILE PP from the parts program will

be ignored.

-181-

CHAPTER 10: PROGRAMMING LANGUAGE

-192-

P. SIX-AXIS SYNCHRONIZED CONTOURING, SYNC

When both sets of axes (X,Y,Z and U,V,W) are programmed to
move, they can perform contouring synchronously, i.e., both sets start
and end simultaneously. To turn on the six-axis synchronized contour-

ing, program:
(SYNC,1)
This command locks the U,V,W move onto the X,Y,Z move. The
X,Y,Z vector speed is programmed by an F codeword and the U,V,W
move simply follows along with the X,Y,Z. In case the X,Y,Z move is

not programmed, the previously programmed E codeword is still used
as the vector speed of the U,V,W move.

In order to turn off the synchronization, use:
(SYNC,0)

Synchronization is a modal command.

ACCEL/DECEL TIME CONSTANT, ADTC

The ADTC command turns on the accel/decel function. The time
constant (in milliseconds) for each axis may be specified, along with
the feedrate threshold (in inches or millimeters per minute). (If time
constant and feedrate threshold are not specified, the ones set in the
EEPROM will be used.) Example:

(ADTC,X65,Y120,F200.)

The ADTC command overrides the accel or accel/decel, time con-
stants and feedrate thresholds set in the EEPROM, but not the

CHAPTER 10: PROGRAMMING LANGUAGE

G8/G9, H8/H9 command. The ADTC command stays in effect
throughout the program unless cancelled by an (ADTC,D) command.

The (ADTC,D) command causes Unidex 16 to revert back to the
accel/decel information set in the EEPROM. You may also program:

(ADTC,D,Z300)

This command tells all axes to default to the parameters set in the
EEPROM, except the Z axis, which will accelerate and decelerate at a
time constant of 300 milliseconds.

Here is a brief explanation of the three ways to utilize accel/decel.

1. Automatic Accel/Decel

When the user’s programming feedrate exceeds the
feedrate threshold set in the EEPROM, accel/decel
automatically turns on, using the time constant set in the

EEPROM.
2, Programmable Accel/Decel
a. G code Accel/Decel

The acceleration function can be programmed with a G8
(X,Y,Z) or H8 (U,V,W), using the time constant set in the
EEPROM. These codes effect only the program block on
which they are located.

The accel/decel function can be programmed with a G9
(X,Y,Z) and H9 (U,V,W), using the time constant set in
the EEPROM. These codes effect only the program block
on which they are located.

-193-

CHAPTER 10: PROGRAMMING LANGUAGE

-194-

b. ADTC Accel/Decel

The accel/decel function can be programmed by the
ADTC command. The time constant is now obtained
from the user’s program, not the EEPROM, unless no
time constant is specified in the program.

The ADTC command remains in effect once it is entered,
unless:

1. (ADTC,D) returns all accel/decel functions to
whatever parameters are set in the EEPROM.

2. Another ADTC command is entered to change the
accel/decel information.

3. A new parts program is run.

TIME CONSTANT

When one axis is included in the ADTC command,
(ADTC,X65,F200.) for example, the axis is accelerated and
decelerated at the time constant specified in the command. If two or
three axes from one group are included in the same command
(ADTC,X65,Y150,Z100,F200.) for example, the highest time con-
stant specified is the one that is used, when more than 1 axes is moved.
If an axis from the other group (U,V,W) is also included in the com-
mand, it retains its own time constant. Example:

(ADTC,X65,Y130,U260)
MOVE TIME CONSTANT USED
X10 65

CHAPTER 10: PROGRAMMING LANGUAGE

Y10 130

210 Parameter setting

v10 260

V10 Parameter setting

W10 Parameter setting
X110 Y10 130
,}/ X10 210 Greatest of 65 or parameter setting
f* X10Y10 210 Greatest of 130 or parameter setting
bm uU10 130 for Y/260 for U

Unidex 16, in order to execute accel/decel’s time constant, must
divide it by 32.768. The range of permissible time constants is65to
8356 milliseconds. This is how the time constant parameter (2-255
range) is calculated. (Refer to chapter 6.) Unidex 16 "rounds off" this
value after the division. Therefore, close values, such as 65 to 68, will
result in the same time constant. Example:

65/32.768 = 1.98 (2)
68/32.768 = 2.08 (2)

FEEDRATE THRESHOLD

When the feedrate threshold specified in the ADTC command is ex-
ceeded by the programmed feedrate, accel/decel will be enabled.

INTERRUPT, INT

The interrupts come in from the I/O bus or the MST bus on the
CRT board.

INT4 - highest - pin 50 of J5, on 1/O bus of CRT board
INT3-2nd* -pin 49 of J5, on |/O bus of CRT board
INT2-3rd" - pin 48 of J5, on |/O bus of CRT board
INT1 -4th " - pin 47 ot J5, on I/O bus of CRT board

-195-

CHAPTER 10: PROGRAMMING LANGUAGE

-196-

CIRQ-4th " - pin 50 of J4, on MST bus of CRT board

INT4, INT3, INT2 and INT1 are all negative edge triggered inter-
rupts, i.e., the interrupt can only be generated when the signal goes
from high to low.

CIRQ can be generated on any signal edge, both rising and falling,

The user can program any one of these interrupts to do certain inter-
rupt functions.

FORMAT :

(INT4,n, 000 VAR1,VAR2,...)
(INT3,n,3000,VAR1,VAR2,...)
(INT2,n,000,VAR1,VAR2,...)
(INT1,n,5000¢,VAR1,VAR2,...)
(CIRQ,n 000, VAR1,VAR2,...)

Any of the interrupt functions must occupy its own block of
program.

The "xoxx" gives the "interrupt service” entry point or subroutine.

The "VAR1,VAR2,..." option shown in the above example, allows
for parameter passing when using interrupt options 1, 2 and 4 (sub-
routine cases). See section 10-7 E on parameter passing and
global/local variables).

The "n" stands for one of the following options:

n=0- Disable interrupt

n=1- Enable type 1 interrupt. Unidex 16 will not stop or abort
the current move when jumping to subroutine xoor. It will

CHAPTER 10: PROGRAMMING LANGUAGE

perform defined functions (I/O, mathematical, system vari-
able input/output, MST functions) as long as these are not
axis moves. After the xxxx subroutine is finished, Unidex
16 continues the next block of functions.

Enable type 2 interrupt. Unidex 16 will stop the current
move and abort any functions left in this block, while
remembering the current machine position. After finish-
ing subroutine xoxx, Unidex 16 will return to the next
block of program.

Enable type 3 interrupt. Unidex 16 will stop the current
move, abort any functions left in this block and remember
the current machine position. It will then jump to the
defined entry point xoox, but will not return to the next
block when finished. Unidex 16 will look ahead while in-
terpreting the parts program during option 3. Unidex 16
does not look ahead during any of the other interrupt op-
tions. This makes program execution slower.

You may enable a "dummy" interrupt function withn=2,4 or 5 in
order to stop Unidex 16 from looking ahead. This is useful when you
want to enable the user-programmable softkey function but do not
want Unidex 16 to look ahead in order to insure that no blocks of
program are skipped over. (See Chapter 13, Unidex 16 Options, for
details on the User-Programmable Softkey Option.)

n=4-

Enable type 4 interrupt. Unidex 16 will finish all of the
functions in this block before going to subroutine xxxx.
After finishing the subroutine, Unidex 16 will return to the
next block of program.

Enable type S interrupt. Unidex 16 will finish all of the
functions in this block. It will then jump to the defined
entry point xxcx, but will not return to the next block when
finished.

-197-

CHAPTER 10: PROGRAMMING LANGUAGE

NOTE: Once serviced, Interrupts (INT1, INT2, INT3, INT4) will remain
onabled until disabled by the parts program. You may also clear an
Interrupt yourself with a (INTn,0) or (CIRQ,0) command. Once dis-
abled, an Interrupt can only be used again K reenabled from within
the parts program.

(CIRQ) will be disabled after being serviced.

S. UMFO, PROGRAM-CONTROLLED MFO

The front panel switch MFO (Manual Feedrate Override) can be
overridden by user-controlled MFO by programming:

(UMFO,n,o0)
The "n" represents the UMFO option:

n=0- Disable UMFO function. Unidex 16 responds to front
panel MFO switch

n =1- Enable UMFO function. Unidex 16 does not respond to
front panet MFO switch.

The "oxxx" can represent the MFO rate range, from 0% to
200%. Example:

(UMFO,1,150)

In the above example, the UMFO function is enabled and the
feedrate is 150% of the programmed feedrate.

The "xoxx” can also represent a variable, whose value may range
from 0 to 200. Example:

-198-

CHAPTER 10: PROGRAMMING LANGUAGE

(UMFO,1,VAR1)

In the above example, the UMFO function is enabled and the
feedrate becomes whatever per cent of the programmed feedrate

VARTI1 specifies.

T. UMSO, USER-CONTROLLED MSO

The front panel switch MSO (Manual Spindle Speed Override) can
be overridden by user-controlled MSO by programming:

(UMSO,n,x000x)
The "n" represents the UMSO option:

n=0- Disable UMSO function. Unidex 16 does responds to
front panel MSO switch.

n=1- Enable UMSO function. Unidex 16 does not respond to
front panel MSO switch.

The "oox" can represent the MSO rate range, from 0% to 200%.
Example:

(UMSO,1,150)

In the above example, the UMSO function is enabled, and the
spindle speed is 150% of the programmed spindle speed.

The "oox" can also represent a variable, whose value may range
from 0 to 200. Example:

(UMSO,1,VAR1)

-199-

CHAPTER 10: PROGRAMMING LANGUAGE

In the above example, UMSO is enabled and the spindle speed be-
comes whatever percent of the programmed spindle speed VAR1

specifies.

U. SAFE ZONE, ZONE

The Safe Zone Command, which is a software limit, applies to
Unidex 16 system software "2U" and later. The Safe Zone is estab-
lished by defining one or more restricted zones, i.c., spaces(s) to
where an axis (or axes) cannot travel .

The purpose of this function is to ensure that:

1. Fixtures within a workspace are not encountered
2. Limits beyond the workspace are not exceeded

The space restricted by the Safe-Zone command may be defined by
only one group of axes (i.e., XYZ and UVW).

Multiple Safe Zones may be established within a program. (Each
requires 50 bytes of user RAM.)

The number of safe zones to be included in a program must be fixed
at the beginning of the parts program. This is done with the command:

(DZON,n)

(This command is valid in the parts program only.) In this com-
mand, "n" is the number of safe zones to be written into the program;
"n" must be an integer, ranging from 1 to 65535, and should appear
only once in the beginning of the parts program. If "n" is mistakenly
entered as less than the actual number of safe zones in the program,
the following error message will appear when the program begins to
run:

CHAPTER 10: PROGRAMMING LANGUAGE

=a% STATUS: error, undefined safe zone ***

The Safe Zone command itself is in the following format (bracketed
entries indicate optional information):

(ZONE,m,[E/D],[XnnnXnnn},[Ynnn,Ynnn],[Znnn,Znnn],
[Unnn,Unnn],[Vnnn,Vnnn],[Wnnn,Wnnnj

The Safe Zone command can be entered in the parts program and
later updated in the mdi mode.

The following definitions will explain each of the Safe Zone com-
mand parameters.

ZONE The Safe Zone Command

m The Safe Zone Command number. This may not be less
than the value of 1 or greater than the number of safe
zones established by the prior command (DZON,n)

E/D Enable or Disable the safe zone command. Disable is the
default, so to enable the safe zone command, enter "E".
*E" is a modal function, and will remain active until dis-
abled by "D".

"E" may be entered in the safe zone command as shown in
the previous example command, or may be entered later
as:

(ZONE,m,E)

XnnnXnnn Enter the X values (+ nnn) to establish the space
along the X axis that is restricted. For example:

«201-

CHAPTER 10: PROGRAMMING LANGUAGE

(ZONE,1,E,X-1.X3.)

This command would restrict a one-dimensional space
along the X axis.

The shaded space in the following illustration is the restricted zone
for the above example command.

NOTE: The space established may involve one axis (as shown in the prior
example), as well as two or three axes (as will be Hlustrated next).

Ynnn,Ynnn Enter Y values (+ nnn) to establish a space along the Y
axis as the restricted zone. For example:

(ZONE,2,E,X-1.,X3.,Y-1.,Y2.)

CHAPTER 10: PROGRAMMING LANGUAGE

~ The shaded space indicates the restricted zone.

Znnn,Znnn Enter Z values (+ nnn) to establish a space along the
Z axis as a safe zone. For example:

(ZONE,3,E X-1.,X3.,Y-1.,Y2.,20,24.)

+Z

+Y

_

N\

AN

+X
-7

The volume illustrated above indicates the restricted zone.
Unnn,Unnn The same as the XYZ group. These axes may be in-

vnan,Vnnn cluded within the same Safe Zone command as the
wnanWnnn XYZ axes. For example:

CHAPTER 10: PROGRAMMING LANGUAGE

(ZONE,5,E X2.X4.,Y-1.,.Y3,,U3.,,U4..V-1..V4.)

However, this will establish two restricted zones: one for the XY
axes and one for the UV axes.

A Safe Zone command may be disabled by programming the com-
mand:

(ZONE,m,D)

where "m" is the Safe Zone command number. If you program
(ZONE,m,E), you will re-enable the command. The parameters will
be the same.

To change the parameters of a Safe Zone command, just reprogram
it. For example:

(ZONE,2,E X10.,X15.,Y6.,Y12.)

This command may be changed by reprogramming its parameters,
as:

(ZONE,2,E X20.,X25.,Y11.,Y17.)
The Safe Zone command is valid for linear as well as circular moves.

A variable, such as the relative position, may be used to establish a
restricted zone as well. For example:

(ZONE,4,E X10.X15.,Y=$YRP +5.,Y=$YRP +1 0.)

The above command specifies that Safe Zone #4 is set from X10. to
X15., and from Y35. to Y10. relative to the Y axis’ current position.

CHAPTER 10: PROGRAMMING LANGUAGE

If the axes are moved into a restricted zone, the status line will dis-
play the error message:

*** STATUS: error, moving toward safe-zone #n ***

NOTE 1:

NOTE 2:

NOTE 3:

NOTE 4&:

NOTE &:

Each time G92/H92 is updated to the new axes positions, you
must program new Safe Zone command information.

Any axis with the Safe Zone function enabled cannot be com-
manded to go home. The Safe Zone command must be disabled
first,

if operating with an Aerotech Tool Changer, however, the Z axis
may still Go Home during a tool operation, even when the Safe
Zone is enabled.

The Safe Zone function can restrict axis movement in the machine
run, mdi and jog modes. (it applies to the jog mode and the mdl
mode only when they are executed from within a parts program.)

The Safe Zone function Is inoperabie when Unidex 16 Is In the
Joystick Slew Mode or Joystick Digitize mode.

The Safe Zone function Is inoperable for any axis operating in the
Axis Free-Run Mode.

V. CUTTER COMPENSATION, CCP

The cutter compensation command is used to adjust the tool
diameter information stored in the tool file (or instead of the tool file).

This information is used when ICRC is activated. The value of CCP
can be positive or negative. Example:

(CCP,T1,-0.0011,T2,0.0018)
or
(CCP,T1=VAR1,T2=VAR2)

-205-

CHAPTER 10: PROGRAMMING LANGUAGE

In the above example, the T codewords specify which tools are to be
adjusted and the variables or values following the T codewords specify
the amounts of compensation.

Unidex 16 bases its ICRC calculations on tool diameters in the tool
file and CCP values in the parts program (if any).

Both tool diameters and CCP values can be expressed as variables.

CCP is a modal command and must be set as shown in the above ex-
ample.

SECTION 10-3 ICRC

ICRC stands for Intersectional Cutter Radius Compensation. In
cutting a workpiece, sometimes the radius of the cutter must be taken
into consideration. For example, when an endmill is used to cut the
sides of a workpiece, the center of the endmill follows the
programmed path. The outside edge of the endmill cuts around the
actual workpiece.

Cutter radius compensation is an option which allows the operator
to program the center of the cutter in such applications, so that the
outside edge of the endmill cuts along the programmed path. Without
this option the operator would have to offset the actual piece dimen-
sions with the radius of the tool. When programming angles other
than 90 degrees is needed, it is no longer just a radius offset. This op-
tion dramatically decreases the programming effort by handling all the
X and Y axis offsets. Also, ICRC option allows the same program to
be used with tools of different diameters just by changing the radius in-
formation in the T table.

CHAPTER 10: PROGRAMMING LANGUAGE

ICRC COMMANDS

There are 3 commands to use:

G40 - Cutter compensation/Offset, cancel
G41 - Cutter compensation-Left, turn ON
G42 - Cutter compensation-Right, turn ON

The commands G41 and G42 are oriented in the direction of cutter
motion. Example:

e A G41 causes the cutter to make a path to the left of the
nominal path by the amount of the radius determined from
the T table. Left is relative to the direction in which the
cutter is moving.

e A G42 causes the cutter to make a path to the right of the
nominal path by the amount of the radius determined from
the T table. Right is relative to the direction in which the

cutter is moving.

G42 G41

Workpiece Workpiece

Figure 10-5 illustrates when to choose G41 or G42.

FIGURE 10-3: ICRC G41/G42 COMMANDS

-207-

CHAPTER 10: PROGRAMMING LANGUAGE

B. START-UP

To start ICRC, enter a G41 or G42 followed by a start-up move
before starting a cut. Then the operator can program the center of the
tool to follow the workpiece contour.

As you can see in figure 10-2, the solid line is the shape to be cut.
The cutter center traces the dotted line, which is offset from the true
shape of the workpiece by the amount of the radius.

The following example shows all X position registers, assuming
Unidex 16 is in the middle of move #3 at the dashed circle position.

e $xap

e— $XRP —»

Currsnt Distance
e — Position—————to go ——¥
™~
-+ —‘(“"—)"‘“‘"'f}
o _3/ A
b |z \
{ r:ﬁ:on \
. \ N
I 5 \
O ——
e} — — e ————|-H
Fouition —_:: -
N Otfect

Rafersnce zerc
(Moating Homa)

Machi Positi

ACTUAL TOOL PATH
PROGRAMMED TOOL PATH

FIGURE 10-4: PROGRAMMED VS. CUTTER PATH

.?08.

CHAPTER 10: PROGRAMMING LANGUAGE

Figure 10-4 demonstrates the tool adjustments necessary to accom-
modate ICRC.

When making a linear to linear move using ICRC, you may switch
from G41 to G42 and vice versa with no problem.

For the sake of accuracy however, when making a linear to circular
or circular to linear move and switching from G41 to G42, a transition-
al move containing a G40 (cancel ICRC) must be placed between the
two.

Another method of switching sides with ICRC is to break the transi-
tional move (the one between linear and circular) into two moves. Ex-
ecute one in G41 and one in G42.

CANCELLING ICRC

To end ICRC, make an ending move to direct the cutter away from
the workpiece after cutting, using the G40 command to turn off the
ICRC.

ICRC must be cancelled before a tool change or M2 command.
After a tool change, to turn on ICRC again, program G41 or G42.

CUTTER COMPENSATION

(See section 10-2 V for information on the CCP command.)

CHAPTER 10: PROGRAMMING LANGUAGE

UNIDEX 16 ICRC

SAME SIDE
G41 or G42

CHANGE SIDES

G41 to G42; G42 to G4l

(PEE) -
NGRS A. LINEAR-LINEAR

Gl G41 X400
X-400

Gl G41 X400 " Tangent
X150 Y150

Gl G4l X400
X160 Y-180

Gl G41 X200
G42 X200

O

G1 G4l X400
G42 X-400

Gl G4@ X400 :é

G42 X150 Y150

B. LINEAR-CIRCLE {OR CIRCLE-LINEAR)

Intersect
point of

edge

G1 G41 X400

G3 X-50 Y10¢ 10 J50

Gl G41 X400
G2 X-100 Y-200 10
3-100)

G1 G4l X400

€42 X150 Y-150
€

G1 G41 X400

G3 G42 X-50 Y100 10 IS0

»

€1 c41
G2 G12 X100 Y-200)
10 J=-100

C. CIRCLE-CIRCLE

G3 G41 X350 Y-200
10 J-100
X0 Y100 10 J50

Intersect point
of two circles

GZ G42 X100 YD
1100 YO 160 JO

(
N

G3 G41 X50 Y-200 10 J-100
G42 X0 Y100 10 350

NN
G2 42 X100 YO 150 10
G41 X150 YO 1?75 10

FIGURE 10-5: ICRC CONFIGURATIONS

-210-

CHAPTER 12: VARIABLES AND MATH PACKAGE

SECTION 12-1 VARIABLES

One of the powerful features of Unidex 16, which allows a motion
control program to be written with maximum flexibility, is the vari-
able. A variable in programming is like a variable in algebra. It has
a name but its value is not fixed.

There are three types of variables. User variables, system variables
and I/O variables. User variables are defined by the user. System
variables are inherent to Unidex 16. I/O variables are defined by data
on the I/O bus.

NOTE: if you are unfamiliar with the relationship between binary and
hexadecimal numbers, refer to appendix 2.

A. USER VARIABLES

The user variables can have user-defined names of from two to four
characters. The first two characters must be letters, while the last two
can be alphanumeric characters or can be omitted altogether. Some
examples are: VAR, PART, AA, XRMS. Some illegal cases are: A,
A/D, X2DR.

If system global variables are defined with a (DSGV,n) command
(explained in the next subsection), then system global variables can be
listed as $Gnn (where "nn" can be any number, limited only by
memory.)

-247-

CHAPTER 12: VARIABLES AND MATH PACKAGE

The purpose of variables is to retain changing data during program
execution. This data is then used when making moves or performing
other operations. Therefore, when a program is being written, the
programmer need not know the exact value of the variable. The ac-
tual value can be determined at the time of execution.

B. SYSTEM VARIABLES

System variables are built into Unidex 16 and have fixed names
which always begin with a dollar (8) sign.

There are three groups of system variables. The first group is the
current absolute position registers. They are:

$XAP: Current X axis absolute coordinate in programming steps
$YAP: Current Y axis absolute coordinate in programming steps
$ZAP: Current Z axis absolute coordinate in programming steps
$UAP: Current U axis absolute coordinate in programming steps
$VAP: Current V axis absolute coordinate in programming steps
$WAP: Current W axis absolute coordinate in programming steps

All absolute registers use the home position as their origin. Home
position is the position to which the type 2 commands (REF) and
(HOME) refer. These variables cannot be altered, they are "read only"
registers.

The second group is the current relative position registers. They
are:

$XRP: Current X axis relative coordinate in programming steps
$YRP: Current Y axis relative coordinate in programming steps
$ZRP: Current Z axis relative coordinate in programming steps
$URP: Current U axis relative coordinate in programming steps
$VRP: Current V axis relative coordinate in programming steps
$WRP: Current W axis relative coordinate in programming steps

-248-

CHAPTER 12: VARIABLES AND MATH PACKAGE

All relative registers use the floating home as their origin. Floating
home is the reference position established by the G92/H92 codeword.
The relative position registers can be altered by using the G92/H92
codeword to change the floating home position.

¢ $XRP
‘ {with ICRC) ’
‘ RP
] {without ICRC) >
TOOL CENTER
—p—_————— = — \‘/(wit.thRC)
F . EIANAY
TOOL CENTER \
+ (without ICRC)
| \
I & \
Reference zero " &
{Floating Home) }' - I \
N — — e —— |4~
$XAP : “*icre
{without ICRC) Offset
$XAP -
{with ICRC) v

ACTUAL TOOL PATH
PROGRAMMED TOOL PATH

FIGURE 12-1: TOOL CENTER IN RELATION TO $XAP & $XRP

Figure 12-1 shows the absolute and relative position registers in
relation to the tool center (both with and without ICRC). Whether
ICRC is on or not effects the contents of both the absolute and rela-
tive position registers,

-249-

CHAPTER 12: VARIABLES AND MATH PACKAGE

The third group of system variables are:

1. Time of Day. The $TOD system variable may be used as 2 mes-
sage to output the time and date in ASCII code. It will be dis-
played on the screen in the same format as the Parameter
Clock mode.

2, SMFO System Variable. The Manual Feedrate Override system
variable may be used for a computation or as a message output
of the present MFO.

By using $MFO in a conditional jump command, it’s value can
determine program flow as well. For example:

(JUMP,ENT1,$MFO.GT.1.5)

The output is floating point and is output as a multiplier, i.e.,
100% is output as 1.0, 145% is output as 1.45, etc.

3. $MSO System Variable. (Explanation for SMFO, above, ap-
plies to Manual Spindle Speed Override as well)

C. /O VARIABLES

There are 2048 /O ports that can be used for data input/output.
Each one is like a variable and can be used to transmit or receive an 8
bit piece of data from the 1/O channel. The 1/O ports are:

$000: 1/O port #0
to
$7FF: 1/O port #7FF

CHAPTER 12: VARIABLES AND MATH PACKAGE

DIAGRAM 1
1/0 BUS ADDRESSING MEMORY MAP

UNIDEX 18 1/0 YERSABUS BASE
BUS ADDREESING ADDRESS AND
MEMORY MAP ADDRESS JUMPERS
(ad9)
?gu o rrr ::n:hch'l ngt) N/A
terrupt Inputs
ko)
(A7)
$700 — $7FF OPTO 22 N/a
(PANTX 1)
§6FF BINARY OUTPUT
(rixed) OPTION
$OF9 - $OFE LASER FIRING CARD
{Fixed OFTION
$5F3 Reserved
(Pixed)
$2re - §2rE Znd LFC CARD
(Fixed)
$100 (Ad42) 201
(Selectsble) MVME 805 18, t-2,
{D/A Output) 3-4, 5-8
(ad1) $021
$010 MVME 410 4, 1-2,
{Duat Paraliel 3-4, 5-8
Port}
$006 (a40) 001
(Selectable) MVME 820 33, 1-2, 3—4
{DC Input) -8, 7-8
UNIDEX 18 1/0 BUS—+ Al Acln
AlZ Al «—— VERSABLUS
UDs
LDS

FIGURE 12-2: I/O BUS ADDRESSING MEMORY MAP

-251-

CHAPTER 12: VARIABLES AND MATH PACKAGE

The number after the dollar sign has to be a hexadecimal number.

On the I/O bus, there are 12 address lines; when data is transferred
over the bus, the port number becomes the lower 11 address lines in
binary form. The most significant bit is always a zero. Many
peripheral devices can attach to this same bus and each respond to a
unique address.

Consecutive addresses can be grouped together to form a word of
16, 24 or 32 bits of data, using the I/O format statement.

D. EXTENDED TYPE 1 CODEWORDS

Two kinds of codewords are designated for data transfer between
variables: Assignment Codewords and Parametric Codewords.

1. ASSIGNMENT CODEWORDS

Assignment codewords are used to assign a value to a variable. For
example:

VAR1=10.0
AA=20
VAR1=AA

In the second example above, AA will have a value of 20.0 assigned
to it because Unidex 16 inserts a decimal point for you. (For the sake
of clarity, it is recommended that you insert the decimal point your-
self.)

a. /O Channel Constant

Unidex 16 can assign the current value of an I/O channel to a vari-
able. Example:

CHAPTER 12: VARIABLES AND MATH PACKAGE

INP3=$004

In the above example, Unidex 16 assigns the current value of the
/O port #4 to the variable INP3. Upon execution, Unidex 16 will
read data from I/O port #4 and transfer it to the variable INP3.
Therefore, an input operation is done and the data is retained as

the variable INP3.

Once the value of a variable is assigned, it will stay until another as-
signment is made.

. Hexadecimal Constant

For some applications, 2 hexadecimal constant may be assigned to
a variable. This is especially useful for logic functions. Example:

VAR1 = H,1234

The H before the 1234 lets Unidex 16 know 1234 is a hexadecimal
number,

No decimal point is allowed in a hexadecimal constant and it is
limited to 8 digits.

. Character Constant

An assignment codeword can also consist of characters. No more
than four characters can be assigned to one variable. Therefore,
for a string of characters, use multiple variables. For example:

VAR="GOOD" VAR2=" MOR" VAR3 ="NING"
A character string may include any alphanumeric or punctuation

character.

~253-

CHAPTER 12: VARIABLES AND MATH PACKAGE

2. PARAMETRIC CODEWORDS

Parametric codewords allow variables to be assigned to codewords
such as X, Y, etc. (This applies to all type 1 codewords except G, H, M
and T.) For example:

X=VAR1
=-AA

The first letter is the address, which serves the same purpose as the
addresses in the RS-274-D standard. Therefore, X means this is an X
codeword, etc. The following information specifies the magnitude and
sign of the codeword. In the above case, if variable VAR1 has a value
of 10.0 at the run time, the final codeword will be X10.0. If variable
AA has a value of -20 at the run time, the final codeword will be Y20.

This programming technique can be used to generate parametric
subroutines. Subroutines can be written with dimensions expressed in
variables, (the value of each variable will be determined by the calling
program). The calling program calls the subroutine and passes specific
information into it. This way, a generic subroutine can be written to
perform a sequence of operations which may appear several times
within the program but whose dimensions may vary each time. The
parametric subroutine saves the programmer from writing this se-
quence many times.

This feature greatly enhances the capabilities of Unidex 16 by
providing to the customer a means of writing a customized canned
cycle, designed to meet specific needs.

I/O FORMAT, IOFT

When an input/output operation is done, using assignment code
words through an I/O channel, the format and the length of data can
be programmed.

CHAPTER 12: VARIABLES AND MATH PACKAGE

It may be entered as (IOFT,BCD,n) for specifying BCD (Binary
Code Decimal) or (IOFT,BIN,n) for specifying binary. The "n" may
be the number 1, 2, 3 or 4. This is the number of bytes to be trans-
ferred. |

Internally the value of a variable is always stored in a 4 byte field in
floating point format with 3 bytes of positive binary mantissa. During
I/O operation, this 3 byte field is transferred to or from I/O port.
Therefore, a variable is always treated as a positive integer during I/O
operations. (In cases where the value is fractional or greater than 3
bytes long, erroneous results will occur.) For example:

(1OFT,BIN,n) or (IOFT,BCD,n)

The first field after IOFT specifies data type, whether in binary or
BCD representation. When BIN is specified, the absolute value is
sent out, When BCD is specified, the absolute value is converted into
BCD format and then sent out.

The second field, represented by "n" in the example, is a number of
1, 2, 3 or 4. This is the number of bytes of data to be transferred. In
either BCD or BIN, up to 4 bytes of data can be transferred with one
command. The most significant byte is transferred first to the address
specified by the I/O code word, and the following bytes are transferred
to the following locations. Example:

(DVAR,VAR1)
VAR1= 1234567
(IOFT,BCD,4)
$008=VAR1

In this example, variable VAR]1 is given a value of 1234567, then
this number is sent to the /O location in BCD format. I/O location
008 receives "01", location 009 receives "23", location 00A receives "45"
and location 00B receives "67".

-255-

CHAPTER 12: VARIABLES AND MATH PACKAGE

1. BCD Data Type
Programming $001 = 34 will output the BCD number 34.

Programming $001 = H,34 will output the BCD number 0, since
Unidex 16 treats 00000034 as a floating point number (converted
to BCD is 0).

Programming $001 = H,88000046 will output the BCD number 34,
since Unidex 16 treats 88000046 as a floating point number and
converts it to BCD 34.

Programming $001 = BTF(H,34) will output BCD number 52.

Programming $001 = VAR1 + SIN(12/VAR2) outputs the BDC
number of the result.

Programming VAR1 =$001 will input BCD data, then store it as
floating point format.

Programming VAR1=FTB($001) will input BCD data, then store
it as binary.

2. Binary Data Type
Programming $001 =34 will output BIN number 88000046.
Programming $001 =H,34 will output BIN number H,34.
Programming $001 =FTB(34) will output the BIN number H,22.

Programming $001 = VAR1 + SIN(12/VAR2) will output the BIN
of the result.

CHAPTER 12: VARIABLES AND MATH PACKAGE

Programming VAR1 = $001 will input the BIN data and store it as
binary.

Programming VAR1=BTF($001) will input the BIN data and
store it as floating point.

NOTE: Refer to appendix 2 for a chart on binary to hex conversions.

CONDITIONAL JUMP, JUMP

A conditional jump uses a type 2 variable as the deciding factor in
whether a jump should be made or not. A jump command can be ex-
ecuted depending on whether a condition is true or not. Example:

(VUMP,nnnn,$XRP.EQ.VAR1)

This jump will be taken if the X axis coordinate equals what is in
VARL1. The place to jump to is nnnn, which is defined by a define
entry command. Legal test conditions for floating point format (real
constants) include:

.EQ. Jump Hif equal

.NE. Jump i not equal

GT. Jump If greater than
Jump H greater or equatl
AT. Jump If less than

.LE. Jump H less than or equal

oO0h N
[
m

As you can see here, the comparison in a conditional jump can be
done between two variables. They can be user variables or system
variables. You can compare a variable with a constant, as well. Ex-

ample:

{(JUMP,nnNN,$005.EQ.0.)

-257-

CHAPTER 12: VARIABLES AND MATH PACKAGE

This will program Unidex 16 to read I/O channel #5 and jump to
nnnn if all bits are low.

For binary format these conditions are limited to:
. .EQ. Jump If equal
. .NE. Jump If not equal

1

2

3. .Hl. Jump If higher than

4. LS. Jump if lower than or same

G. REPEAT LOOP, RPT

The repeat counter can be a user-defined variable. The value of the
variable will be rounded off into an integer, then taken as the repeat
count. Example:

VAR = 2.6
(RPT,VAR1

This loop will repeat 3 times, since 2.6 becomes 3 after truncation,

If a minus number is assigned to the variable, it will be converted to
a positive number before rounded off. For example, if VAR1 = -2.6,
the loop will also repeat three times.

CHAPTER 12: VARIABLES AND MATH PACKAGE

H. SCALING FACTOR, SCF

The scaling factor used in the SCF command can be a variable.
For example:

(SCF,X=VAR1)

I. USE OF VARIABLES WITH SUBROUTINES

NOTE: All variables are Initialized to a value of zero when they are defined.

1. DEFINE VARIABLES, DVAR

A named user-variable in the main program must be defined by a
DVAR command. Example:

(DVAR,VAR1,AA XRMS,VAR2)

Above, four variables are defined: VAR], AA, XRMS and VAR2.
Their values are all set to 0.

Each variable occupies 12 bytes of RAM, 4 for the name, 4 for its
current value and 4 for cutter radius compensation looking ahead. All
user variables are stored in floating point format with 3 bytes of man-
tissa and 1 byte of sign and exponent. This memory will be taken from
the stack, which is part of the user’s RAM space. Therefore, the num-
ber of variables is limited by the user’s memory. It is a2 good program-
ming practice to define variables at the beginning of a program.

2. CALL SUBROUTINE WITH PARAMETERS, CLS

The parametric subroutine is one of the key attributes of contem-
porary motion control. It allows a sequence of operations to be

-259-

CHAPTER 12: VARIABLES AND MATH PACKAGE

programmed into a subroutine without knowing specific dimensions.
This has two advantages:

a. Similar operations can be done with one subroutine by chang-
ing the value of parameters. The user can virtually create his
own canned cycle and do modular programming.

b. The sequence of operation can have critical values determined
at the run time instead of being preprogrammed. With proper
probing and sensing devices, these value assignments can vary,
depending on external conditions.

Both modular programming and adaptive control can be achieved.
The example below shows such a subroutine call:
(CLS,nnnn,1234,123.4,VAR1)

The nnnn is the subroutine name. Following the name are three
parameters. These parameters can be actual values or variables. If a
real value is used, this value will be passed into a subroutine. If a vari-
able is used, the value of this variable will be passed into a subroutine.
All variables must have already been defined by the DVAR or the
DSGV commands, if in the main program. If in a subroutine, the vari-
ables must have been defined by DSGV, DFS or DVAR, if the global
declaration (GLOB) is used.

3. DEFINE SUBROUTINE WITH PARAMETERS, DFS

The DFS command is used to define a parametric subroutine. It
also defines variables implicitly. Example:

(DFS,nnnn,AAAA,BBBB, TRY1
X=AAAA Y=BBBB Z1.5 F=TRY1

)

CHAPTER 12: VARIABLES AND MATH PACKAGE

This defines a subroutine with the name nnnn. Also, it defines vari-
ables AAAA, BBBB and TRY1. Only variables can be placed in a
parameter list, real values are not allowed. The value of these vari-

ables will be determined at the run time by the calling program. If the
DFS in this example is used in conjunction with the CLS in the pre-
vious example, values of these variables will be:

AAAA =1234.
BBBB=123.4
TRY1=Value of VAR1

In the subroutine, these variables can be used as distance, feedrate,
repeat loop count, scaling factors, cutter radius compensation, etc.

DEFINE LIBRARY SUBROUTINE, DFLS

All features that are available for the DFS command also apply to
the DFLS command. The only difference is the DFLS command
preserves the machine statuses, as mentioned in chapter 8,

RETURN-VALUE INSTRUCTION (RVAL)

The (RVAL) command permits the value of variables to be passed
back to the calling routine (main program or subroutine) by position
rather by name. The position refers to the CLS (Call Subroutine) and
DFS (Define Subroutine) listing of variables®. In the following ex-
ample, VAR is in position 1, VAR2 is in position 2.

(DFS,SUB1,VAR1,VAR2,....
(RVAL,2)*

(FIVA.L,2,1)

«-281-

CHAPTER 12: VARIABIES AND MATH PACKAGE

* This function Is for named variables only. A real value or a $Gnn
variable is not counted as a position.

In the previous example, the second line returns the value of the
variable in position two (VARZ) of the calling routine, and the third
line returns both. Note that these may be listed in any order.

6. ABORT SUBROUTINE, ABTS

Normally after a subroutine is executed, Unidex 16 returns to the
main program. The ABTS command allows the current level of sub-
routine to be aborted and execution to continue at a place
programmed by the user. Example:

(ABTS,nnnn)

The nnnn in the above example is an entry point defined by 2
(DENT) command. This command must be located inside the sub-
routine (which is enclosed in parentheses). Example:

(DFS,TEST

.(JUMP,ENT1 VAR1.EQ.2)
(ABTS,ENT2)
(DENT,ENT1)

)
(DENT,ENT2)
Unidex 16 jumps to the entry point "ENT2" at the end of the sub-

routine "TEST" rather than going back to the main program, if VAR1
does not equal 2.

CHAPTER 12: VARIABLES AND MATH PACKAGE

7. METHODS OF USING VARIABLES

There are conventions which must be observed when using vari-
ables in both the main section of a program and in subroutines. You
have a choice of methods, depending on preference and requirements
of the program. The three methods are:

a. Separate Variables for Program and Subroutine

This option was the only choice before Unidex 16 software version
2Y. The DVAR command initializes variables named in the list-
ing as the main program variables. These may be accessed freely
in the main program for any function.

To pass the value of a variable to a subroutine, the CLS command
must list the main program variable as a parameter. The DFS com-
mand must list a variable to be used by the subroutine, and the
value of the main program variable will be loaded into the sub-
routine variable. The subroutine may then use its variable for any
functions. Main program variables may not be used in the sub-
routine for any functions except to assign a new value to the main
program variable. The variables defined by the subroutine cannot
be used by the main program. For example:

(DVAR,VAR1,VAR2,VAR3)
VAR1 =350
(CLS,SUB1,VAR1,500)

(DFS,SUB1,SVR1,SVR2,SVR3
SVR3=SVR1+8VR2
VAR1=8VR3

)

-263-

CHAPTER 12: VARIABLES AND MATH PACKAGE

In this example, the main program variables are VAR1, VAR2 and
VAR3. The subroutine variables are SVR1, SVR2 and SVR3. When
the subroutine is called, SVR1 has a value of 350, which was the value
of VAR1. SVR2 has a value of 500, which was a real number in the
parameter listing. SVR3 has a value of zero because there was no cor-
responding parameter in the CLS command. The second line of the
subroutine assigns the value 850 to SVR3 (350 + 500). VART1 is then
updated by the subroutine (the only operation allowed on VARL1 in
the subroutine) to the value of 850.

If a subroutine calls another subroutine, the same convention is
used to pass values back and forth.

b. Global Declaration Option (GLOB)

The programmer may find it more convenient to declare all vari-
ables defined by the DVAR command to be global. The term
global means accessible by both the main program and any sub-
routines used. This eliminates the need to list variables in CLS
and DFS commands. Therefore, there is no need to pass a value
back to the main program because the variables are used directly
in all parts of the program. The Global declaration option is ac-
tivated by the use of the command (GLOB) in the program. The
DFS command may still define variables for use in the subroutine,
but these are not global. Parameters may be passed with DFS as
explained above, in method 1.

c. Special Global Variables (DSGV,n)

The use of the global variables of the form $Gnn works the same
as the global variables explained above, but will save memory. The
declaration (DSGV,n) sets up the total number of these variables
the program will use, and is all that is required. The variables are
initialized to zero, and may then be accessed by number. Because
names are not used, there is a 1/3 savings in memory, and when a

CHAPTER 12: VARIABLES AND MATH PACKAGE

large number of variables are used, access should be faster than
the old method. For example:

(DSGV,50)

sets up 50 global variables. $G22 would be variable #22, for in-
stance.

SECTION 12-2 MATHEMATICAL PACKAGE

There are other variations to the assignment and parametric
codewords.

A. ARITHMETIC OPERATIONS FOR REAL CONSTANTS

Arithmetic operations allow Unidex 16 to be programmed to its
greatest flexibility. These operators apply only to real constants (float-
ing point format). They include:

+ Addition

= Subtraction

* Muttiplication
/ Division

() Module

! Exponentiation

These operators can be used in both assignment codewords and
parametric codewords. Example:

CHAPTER 12: VARIABLES AND MATH PACKAGE

X = 1.2*2/(78.789!123) + VAR1-44.0*VAR2
or
VAR1 = VAR2*(VAR3/2) +0.125!0.5

B. MATHEMATICAL FUNCTIONS FOR REAL CONSTANTS

Unidex 16 provides the following math functions for the most
sophisticated operations. These functions apply only to real constants
(floating point format). They include:

SINQX) Sine function of X
COS(X) Cosine function of X
TAN(X) Tangent function of X

In the above function, all angles are programmed in decimal de-
gree. For example, SIN(22.5) means the sine function of 22.5 degrees.

ATN(X) Arctangent of X

The arctangent function always results in an angle in radians. To do
the conversion between degrees and radians, the following two func-
tions are available:

DEG(X) Radians to degrees conversion of X
RAD(X) Degrees to radians conversion of X

The following two functions complement all of the above.

ABS(X) Absolute value of X
SQR(X) SquarerootofX

CHAPTER 12: VARIABLES AND MATH PACKAGE

When a real number needs to be converted to an integer number,
use:

INT(X) IntegerofX

In the above function, the number is rounded off. For example a
command of INT(123.05) would give 123 as the integer.

The function BTF (binary to floating) is used to convert binary for-
mat to floating format. Example:

BTF(H,2)

In the above example, the hexadecimal number 2 can be included in
a floating format equation, since it will be converted.

Floating format and binary logic cannot be in the same equation un-
less one or the other is converted. For example, VAR1=2+H,3 will
not generate 5. You must enter:

2+BTF(H,3)
or
FTB(2).ADD4.H,3

The FTB command and logic functions in the second equation are
covered in the next section.

These math functions can be used together with all arithmetic
operations in parametric or assignment codewords. In descending
order of priority, these operators can be listed as:

SIN,COS,TAN,ATN,DEG (highest)
RAD,ABS,SQR,INT,BTF

()
!

-267-

CHAPTER 12: VARIABLES AND MATH PACKAGE

*and /
+ and -

A higher priority operator is evaluated before lower ones inan
equation. Two operators of the same priority will be evaluated by
their sequence of appearance. This order matches the convention in
the normal free-hand math format. Example:

X = XOFS +0.5*SIN(30)/(2.5+ (SQR(0.7512 +0.25!2)))
Y = YOFS +0.5*COS(26 + 45/60 + 10/3600)/0.125%0.22

In the second equation, a cosine function of 26 degrees, 45 minutes
and 10 seconds is specified using an arithmetic expression. Therefore,
an angle in degrees, minutes and seconds can be easily programmed
into the control.

LOGIC FUNCTIONS FOR BINARY NUMBERS

With binary format (hexadecimal constants and character con-
stants), Unidex 16 provides specific logic functions.

With the exception of FTB, these functions may be followed by 2
number (represented by an n). This number indicates how many of
four bytes (each bytes containing 8 bits) of memory location are ef-
fected by the function. (Unidex 16 assigns 4 bytes of memory location
for each variable.)

MSB LSB
B4 | B3| B2| B1]

If no number is entered after a function, the default number is 1,
and only B1 is effected by that function.

The arithmetic operations for binary numbers are:

CHAPTER 12: VARIABLES AND MATH PACKAGE

1. FTB -

Floating to binary. Converts floating format to binary format.
For example, FTB(34) is equivalent to H,22.

NOTE: Do not mix binary logic and floating format mathematics together in
the same equation without first converting one type with a BTF or
FTB command.

2. NOTn. -

This function requires only one operand. It changes ones to
zeroes and zeroes to ones. Example:

VAR1=.NOT2.VAR1

Bytes 1 and 2 of VAR1 are "notted". If it was H F32, which
in binary is:

B1 B2
00001111 00110010

It is now H,FOCD, which in binary is:

B1 B2
11110000 11001101

3. ANDhn. -

This function requires 2 operands in any sequence. It ANDs

two variables. To explain ANDing, refer to the AND table
below:

-269-

CHAPTER 12: VARIABLES AND MATH PACKAGE

1=1.AND. 1
0=1.AND.O
0 = 0.AND. 1
0=0.AND.O

NOTE: Both must be a 1 before a 1 resuits.

An example of ANDing two variables is:
VAR1=VAR1.AND2.VAR2

In the above example, B1 and B2 of VAR1 will be ANDed
with B1 and B2 of VAR2.

If VAR1 is H,38A, which in binary is:

B2 B1
00000011 10001010

and VAR?2 is H,29C, which is:

B2 B1
00000010 10011100

then the resultant VAR1 is H,288, which is:

B2 B1
00000010 10001000

The ANDing function is used to mask off other bits while
reading a particular bit. If, for example, data on /O port # 1
“must be checked, you must compare it to the hexadecimal num-
ber which corresponds to the bits to be checked. Example:

VAR1=$001

CHAPTER 122 VARIABLES AND MATH PACKAGE

VAR1=VAR1.AND.H,1
(JUMP,nnnn,VAR1.GT.0)

VARI1 would be ANDed with H,1:

$001 D|0|0|O|0|0|0|1|

H,1 |0]0}0]|0]|0]0]1

ANDing byte 1 of I/0 port #1 with the hexdecimal number 1
enables you to check bit 1 of byte 1. If this results in a 1 for
VAR], it indicates that the bit is set and the jump should be
made.

(If the bit had been 0, ANDing it with a 1 would have
resulted ina 0.)

ORm. -
This function requires 2 operands in any sequence. It ORs
two variables. To explain ORing, refer to the OR table below:

1=1.0R.1
1=0.0R.1
1=1.0R.0
0=0.0R.0

NOTE: ffeitherisa1, a1 results.

An example of ORing two variables is:
VAR1=VAR1.OR.VAR2
In the above example, B1 of VAR1 will be ORed with B1 of
VAR2,

-271-

CHAPTER 12: VARIABLES AND MATH PACKAGE

If VAR1 is H,28A, which is:

B2 B81
00000010 10001010

and VAR2 is H,29C, which is:

B2 B1
00000010 10011100

the resultant VAR1 would be H,29E, which is:

B2 B1
00000010 10011110

ORing is usually used to set a bit once it has been read,
despite its previous status. Example:

VAR1=$002
VAR2=VAR1.0R.H,1
$002=VAR2

VAR1 would be ORed with H,1:

$002 10]0j0]|0]0][0]0]Of

H,1 |0]0j0j0|0]0]1

After VARI1 byte 1, bit 1is ORed with H1, it is set and is as-
signed to 1/0 port #2.

50 .XORII. -

Exclusive ORing. Requires two operands in any sequence.
To explain XORing, refer to the XOR table below:

CHAFPTER 12: VARIABLES AND MATH PACKAGE

0 =1.XOR.1
1 =0XOR.1
1=1X0R.0
0 =0XOR.0

NOTE: Only when the two are different does a 1 result.

An example of XORing two variables Is:

VAR1=VAR1.XOR.VAR2

In the above example, B1 of VAR1 will be XORed with Bl
of VAR2.

If VAR1 is H,28B, which is:
00000010 10001011
and VAR2 is H,6C9, which is:
00000110 11001001
the resultant VAR1 would be:

00000010 01000010
(or H,242)

Byte 2 of VAR1 would remain the same since it wasn’t in-
volved in the .XOR. function.

XORing is very useful because it can be used to flip the
status of a bit. Once a bit has been XORED with a 1, it will
change status. If a zero is XORed with a 1, it will become a 1.
If a 1is XORed with a 1, it will become a zero. Example:

-273-

CHAPTER 12: VARIABLES AND MATH PACKAGE

VAR1=$001
VAR1=VAR1.XOR2.H,2

Byte 1 of VAR1 will be XORed with H,2:

B1
$001 p[ojojojojoi1]1]
H,2 bjojoiojo(o]t]d

Byte 1 of $001 will now read 00000001 and the status of bit 2,
byte 1 will have changed after being XORed with a 1.

6. LSLn. -

Logical shift left. This function requires 2 operands in a
specific sequence. The first operand names the variable. The
second specifies the number of bits to be shifted to the left. Ex-
ample:

VAR1=VAR1.LSL.H,3

Only the bits in byte 1 will have its bits shifted left. They will
shift left 3 spaces (specified by H,3). If the contents of byte 1
are:

10101010
the first 3 bits (101) will be replaced by the next 3 (010). The

3 empty spaces on the right will be replaced with zeroes. The
resulting byte 1 will be:

01010000
An example where bytes 1 and 2 are effected is:

VAR1=VAR1.LSL2.H,3

274-

CHAPTER 12: VARIABLES AND MATH PACKAGE

In this case, the 3 bits to be shifted to the left in byte 1 will
shift over to byte 2. The 3 bits to be shifted out of byte 2 will
"fall off" (as in the first example). The 3 empty spaces on the
far right of byte 1 will be replaced with zeroes. Example:

B4 B3 B2 B1
00000110 | 00100011 | 10010111 | 01101111}

After VAR1=VAR1LCIL2H,3, VAR1 will be:

B4 B3 B2 B1
00000110 | 00100011 | 10111011 [01111000]

.LSRn. -
Logical shift right. This function is the same as .LSL, except
it shifts to the right.

ROLa. -

Rotate left. This function requires 2 operands in a specific
sequence. The first operand names the variable. The second
specifies the number of bits to rotate left. Example:

VAR1=VAR1.ROL.H,3

Only the bits in byte 1 will rotate left 3 spaces. The first 3
bits will "wrap around”, filling in the empty spaces on the far
right. Example:

01010111

Becomes:

-275-

CHAPTER 12: VARIABLES AND MATH PACKAGE

10111010
When 2 bytes are involved, as in:
VAR1=VAR1,ROL2.H,3

the 3 first bits in byte 2 "wrap around”, filling in the spaces on
the far right of byte 1. Example:

B4 B3 B2 B1
{po000110 | 00110111 | 01110010 | 11001010 |

will result in:

B4 B3 B2 B1
0000110 | 00110111 | 10010110 | 01010011|

9. RORn. -

Rotate right. This function is the same as .ROL, except it
rotates right.

10. .ADDn.-

Adds 2 or more variables. Requires at least 2 operands in
any sequence. For example:

VAR1=VAR1.ADD.VAR2

Binary numbers are ADDed by carrying numbers as in con-
ventional addition. Example:

276

11.

CHAPTER 12;: VARIABLES AND MATH PACKAGE

10111011
+_01001011
100000110

In ADDing binary numbers in an 8 bit register, the last car-
ried-over number is dropped.

oSUBnc -

Subtracts one variable from another. Requires 2 operands
in a specific sequence. For example:

VAR1=VAR1.SUB.VAR2
or
VAR1=VAR1.SUB2.H,3E

Binary numbers are subtracted by borrowing numbers as in conven-
tional subtraction. Example:

12.

10111011
=01001011
01110000

.TSTA.nnnn -

The TSTA (test AND) function needs 2 operands in a
specific order. The first specifies the variable to be tested. The
second specifies which bits are to be tested.

This function is called TSTA because the result is true (1)
only if all bits tested are 1. This function involves all 4 bytes

- (32 bits). An example of TSTA.nnnn is:

VAR1=H,3F.TSTA.H,11

-277-

CHAFTER 12: VARIABLES AND MATH PACKAGE

H,3F 001|1] 111|1]
H,11 000|1] 000|1]

VAR1 will equal 1 because both bits to be tested are true (1).
A practical example of TSTA is testing an I/0 port. Example:

(JUMP,ENT1,$002.TSTA.H,12.EQ.H,1)
$002 0011 1010
H,12 0001 0010

Since both test bits are true, the jump to ENT1 is ac-
complished.

13. .TSTO.nnnn-

The TSTO (test OR) function needs 2 operands in a specific
order. The first specifies the variables to be tested. The
second specifies which bits are to be tested.

This function is called TSTO because the result is true (1) if
any of the bits tested is 1. This function involves all 4 bytes (32

bits). An example:

VAR1=H,35.TSTO.H,3

H,35 001101|01|
H,3 0000 00 |11]

In the above case, one test bit is true and one is false. In
TSTO just one needs to be true, so the result in the above ex-
ample is 1, so VAR1=1. A practical application of TSTO is:

-278-

CHAPTER 12: VARIABLES AND MATH PACKAGE

(JUMP,ENT1,$001.TSTO.H,6.EQ.H,1)

$001 0010 0101
H,6 0000 0110

The jump will be accomplished since at least one test bit is
true. Another example is:

$023=H,3F.TSTO.H,CO

H,3F 0011 1111
H,CO0 1100 0000

Data on I/O port $023 will be set to zero since no test bit is
true.

The order of priority in which the logic functions are ex-
ecuted is as follows:

FTB (highest)

.NOT. (second)

ANDn. .ORn. XORn. .LSLn.
.LSRn. .ROLN. .RORN. .ADDN.
SUBn. .TSTA..TSTO.

NOTE: The "n" shows byte-wide operation:
n = 1ornonis1byte
n = 2is2bytes
n = 3is 3 bytes
n = 4is 4 bytes

279

CHAPTER 12: VARIABLES AND MATH PACKAGE

D. BIT MANIPULATION FOR THE 1/O CHANNEL

New instructions BTRD and BWRT permit the writing and read-
ing of single or multiple bits on the I/O channel. These commands
also permit the use of variables for the 1/O address. Only one I/O ad-
dress one byte long may be processed per block. The following list ex-
plains the new bit manipulation commands.

1. (BWRT,$x0x,bv,...) whereb=0-7 andv=0or1
An example of the above command would be:

(BWRT,$700,30,11) or
(BWRT,$70030,11) or
(BWRT,$70030,1)

All of the above examples set bit 3 to 0 and bit 1to 1. As can be

seen, the second comma is optional. The third example shows that the
status of bit 1 is not entered. Therefore it defaults to the value of 1.

2. (BWRT,$:00¢(,VAR,...) VAR is a 2 digit ASCII variable
For example:

VAR1="30"
VAR2="11"
(BWRT,$700,VAR1,VAR2)

Similar to the first group, the bit number and value are determined
by the value of an ASCII variable. Care must be taken to set the vari-
able to an appropriate value. Allowed values are:

00,01,10,11,20,21,30,31,40,41,50,51,60,61,70,71

CHAPTER 12: VARIABLES AND MATH PACKAGE

3. (BWRT,VAR,bv,..) VAR="$:1ox" ASCIil
For example:
ADDV ="$700"
VAR1="30"
VAR2="11"
(BWRT,ADDV,VAR,VAR2)

Results of above example are the same as in (2).

4. (BWRT,VAR,v) VAR="oxb"
Example 1:

ADDV="7001"
(BWRT,ADDV,0)

At address $700, bit 1 is set to 0.
Example 2:

(BWRT,ADDV)
Bit 1 is set to 1 by default.

The use of fixed values and variables may be mixed in a block of in-
struction.

Example 3:

VAR ="7000"
(BWRT,VAR,1,11)

~281-

CHAPTER 12: VARIABLES AND MATH PACKAGE

At $700, bit 0 is set to 1, bit 1 is set to 1. In this case, do no use an
implied "1" status for bit zero, or an error will resuit.

6. BIT READ COMMAND

The bit read function is similar to the bit write function in the struc-
ture and use of variables. A variable is specified and bits will be set in
this variable if the specified tested bits are set. Once this variable is
set up by this command, it may be used with logic functions in other
blocks to alter program flow, etc. For example:

(BTRD,VAR1,$700,1,3,6)

$700 is tested for the status of bits one, three, and six. If any of
these are a one, the matching bit in the variable VAR1 is set.

CHAPTER 13: UNIDEX 16 OPTIONS

SECTION 13-10 TCIO MODULE OPTION

For the hardware and installation considerations of this option, see
the Unidex 16 Hardware Manual.

The TCIO Module option provides the user with the following fea-
tures:
e 4 (opto-isolated or logic) inputs to Unidex 16
e 4 input-activated interrupts
o Interface for the Opto 22 Pamux 1 card
e Reset circuitry
e Termination for the I/O bus
e Power input to the I/O bus
e Single-high (3U) VME card form factor
e Jumper selection for interrupts

o Jumper selection for interrupt edge sensing

A. INPUTS

In order to read the 4 inputs, Unidex 16 will read the first 4 bits of
the input/interrupt status register. An input is indicated when the ap-
propriate bit is set high. The input/interrupt status register is always
located at address $780. The second 4 bits are designated as the inter-
rupt flags.

CHAPTER 13: UNIDEX 16 OPTIONS

INPUT/INTERRUPT STATUS REGISTER

INPUT /INTERRUPT STATUS REGISTER

nonnonnn

Intarrupt 4 Input 1
interrupt 3 L nput 2
Iotarrupt &2 loput 3
Imterrupt 1 mput 4
DIAGRAM 1

Following is an example of programming Unidex 16 to read the in-
puts:

VAR1=$780
(MSG, <2 > ,#H:VAR1)

In the above example, Unidex 16 will read the inputs and store the
data in a user’s variable (VAR1).

See chapter 12 for more on the use of variables and the logic func-
tions that help you to utilize your input information.

In the above example, the second block will cause the input informa-
tion to be displayed on the CRT for 2 seconds in a hexadecimal format.

B. INTERRUPTS

The Unidex 16 1/O bus has 4 interrupts which are shared by all I/O
modules. On the TCIO board, these 4 interrupts are accessed via the

CHAPTER 13: UNIDEX 16 OPTIONS

4 inputs. Each interrupt line has a certain priority, INT4 having the
highest priority, INT1 having the lowest.

The interrupt lines are used to interrupt Unidex 16 while it is per-
forming another task. An interrupt is generated when a change in volt-
age level is detected (as opposed to an input, which detects a voltage
level).

When an input is activated, the corresponding interrupt flag will be
set and the interrupt line will be held low by the TCIO board until that
flag is cleared by Unidex 16 by reading or writing to the appropriate
TCIO address (see table below).

TCIO ADDRESS INTERRUPT FLAG
70 - ———————— Interrupt flag 1
$7A0 ———————— Interrupt flag 2
$7B0—-———————~— Interrupt flag 3
$7C0——~—————— interrupt flag 4

Because the interrupt lines are shared by all /O modules, one of
the first tasks performed by Unidex 16 upon receiving an interrupt will
be to determine which module generated the interrupt. By reading
the Input/Interrupt Status Register, Unidex 16 can determine if the
TCIO board generated the interrupt by checking to see if any of the
bits are set (see diagram 1).

The Status Register check and the clearing of the interrupt ﬂagé
must be generated by the user’s program.

INTERRUPT FLAG OUTPUT

In addition to the internal functions of the interrupt flags, each flag
provides an output and LED indicator as well. The output allows the
user to see when an interrupt flag has been set as well as when its been
cleared.

-327-

CHAPFTER 13: UNIDEX 16 OPTIONS

The output is available through an optical isolator (Motorola 4N33).

A typical example of an interrupt is as follows:

N1 (INT1,4,SUB1) ; Enable interrupt. Upon INT1,
; 80 to subroutine SUB1
N10 (DFS,SUB1 ; Define subroutine SUB1
N11 VAR1=$780 ; Read Input/Interrupt Status
; Register
N20 $790=H,00 ; Clear interrupt flag #1
; tozero
N21 (MSG,<2>,INT1- ;Display message showing INT1 as well as the
VAR1=#H:VAR1) ; hex value of VAR1
N22) ; End of subroutine

In the above program, N1 will arm Unidex 16 to act on a level 1 in-
terrupt, utilizing the #4 option. The #4 option tells Unidex 16 to
finish all functions in the present program block before servicing the
subroutine and when the subroutine is complete to go back to the next
block of the main program.

C. OPTO 22 PAMUX 1

Each Opto 22 Pamux 1 board has 2 (8-bit) bytes of data, each bit
corresponding to one I/O module, and is provided with an address
switch. An address ranging from $700 to $77F may be selected. When
the address switch for one Opto 22 board is set to a certain address,

. for example $700, the first 8 modules are assigned to this address.

CHAPTER 13: UNIDEX 16 OPTIONS

Automatically, the second 8 modules are assigned to the next address
(in this case $701).

To select addresses, see the following diagram:

OPTO 22 PAMUX 1

OPTO 22 ADDRESS ADDRESS MODULES ADDRESS MODULES
PAMUX 1 SWITCHES

654321
A47(A) CCCCCC $700 0-7 $701 8-15
A47(B) cccececce $702 0-7 $703 B—-15
000000 $77E 0-7 $77F 8-15
C = Closd
0 = Open

NOTE: Terminating resistors on the last Pamux 1 board only. Remove all
others.

SECTION 13-11 BINARY OUTPUT BOARD OPTION (BO-16)

For the hardware and installation considerations of this option, see
the Unidex 16 Hardware Manual.

The Binary Output Board Option is dedicated to providing the ac-
tual positions of the axes, on the fly, when requested to do so by the
user’s host computer.

The Binary Output board also features the following:

-329-

CHAPTER 13: UNIDEX 16 OFTIONS

A.

e Unidex 16 Versabus compatible
e Compatible with DEC DRV-11J I/O Interface

e Counter information which can be latched and output at any
time

e Address selection for output of each axis

e Individual axis reset via Unidex 16 I/O Channel
e Jumper selection for one free-run (rotary) axis
o Remote read-out display option

¢ For rotary axis, switch select "once per revolution” reset on
both the + and - directions

e Remote display interface, a 50 pin connector, can interface to
Aerotech’s Read-out Module

/0 BUS

The axis counters on the board may be reset in unison, individually
or in any combination, via the I/O bus. (This feature is remotely acces-
sible.)

Writing to address 6FF in hexadecimal, using the Unidex 16 format
$6FF = H,nn, resets the desired axis counters.

NOTE: RESETTING THE BINARY OUTPUT BOARD BY USE OF THE I/0
BUS DOES NOT RESET THE AXIS OR ANYTHING PERTAINING TO
IT WITHIN THE UNIDEX 16 SYSTEM.

Sending $6FFaccesses ** WV U Z Y X

To reset the Binary Output Board via the 1/O bus, write:

CHAPTER 13;: UNIDEX 16 OPTIONS

$6FF =H,nn (nn represents the byte of reset information
being sent to the Binary Output Board. A zero is
sent to reset the axes counters.) For example:
$6FF=H,12
wouldsendout 0 0 0 1 0 0 1 0and would
reset the W, U, Z and X counters.

NOTE: Al of these conditions are true for the remote display as well.

SECTION 13-12 FRONT PANEL OPTO INTERFACE BOARD

For the hardware and installation considerations of this option, see
the Unidex 16 Hardware Manual.

The Front Panel Opto Interface Board allows the user to remotely
access any ten of the front panel keys.

The front panel opto interface board provides the following fea-
tures:

e Opto isolation
e Remote access of up to ten Unidex 16 front panel keys
o Isolated power supply

e Matrix jumper selection of remote keys

See the Unidex 16 Hardware Manual for all jumper selections.

-331-

CHAPTER 13: UNIDEX 16 OPTIONS

SECTION 13-13 LASER FIRING CARD OPTION (LFC-16)

The Laser Firing Card enables a laser to be fired with precision by
calculating the vectorial positions of any 1 or 2 axes (X, Y, Z, U, Vor
W) at any given time. It also outputs the vectorial data rate as an

analog signal.

The laser firing option is a function of the I/O bus and is enabled
through the parts program or the mdi mode. The program determines:

1. Distance (in machine steps) to be covered before laser
fires

Laser firing option enabled or disabled
Presence or absence of warm-up pulse

The 1 or 2 axes selected

o a2 ® N

Data rate analog signal ratio

A. PULSE WIDTH

The pulse width (in xS) is programmable through the I/O channel
via commands $6FA =H,nn and $6FB = H,nn, where:

$6FA may range from 00 to FF (MSB)
$6FB may range from 01 to FF (LSB)

CHAPTER 13: UNIDEX 16 OPTIONS

DATA RATE ANALOG SIGNAL

The data rate analog signal depends on the the data rate from the

encoder feedback. A 0 volt (slowest speed) to 9.9 volt (highest speed)
analog signal will be output through the same Weidmuller connector.

The pin assignments are:

PIN 10 = ANALOG VOLTAGE
PIN 8 = COMMON

To insure your system of getting the maximum analog signal for
your particular highest data rate, a "proportional factor", which is an
1/O function, must be programmed as follows:

$6F9=H,nn
where "nn" may range from 01 to FF (hexadecimal). How to find your

highest data rate and, based on that, your proportional factor, is as fol-
lows.

Unidex 16’s highest data rate on each axis is 125 KHz. Therefore,
the maximum 2 axes vectorial data rate is:

System’s highest data rate = v[(125)° + (125))
= 176.777

Based on that information, the proportional factor is found:

Proportional Factor = (System’s Highest data rate/176.777) * 255
= 255 (program hex equivalent of H,FF)

Although 125 KHz is the maximum data rate of Unidex 16, there
are several other factors that may limit the maximum system data rate.
These may include: :

CHAPTER 13: UNIDEX 16 OPTIONS

1. Motor-ampilifier match
2. Encoder limRtations
3. Mechanical limitations
4. Application

Since this is the case, you may calculate your own system’s highest
data rate and optimum proportional factor in the same fashion, i.e.

Your system’s highest data rate
= VI(Axis 1 highest data rate)” + (Axis 2 highest data rate)]

Proportional Factor

= (Your system’s highest data rate/176.777) * 255
= nn

Take the hexadecimal equivalent of "nn" and enter that into your
6F9 = H,nn command.

If, for example, the highest data rate for both axes is 80KHz:

Your system’s highest data rate = \/[(80)2 + (80)2]
= 113

Proportional factor = (113/176.777) * 255
= 163

Program the hexadecimal equivalent of 163, which is H,A3. The
laser firing card will now output 9.9V when both axes run at 80KHz.,
4.95V when both axes run at 40KHz,, etc.

CHAPTER 13: UNIDEX 16 OPTIONS

C. OPERATION

The Laser Firing Card can sense either a command clock (stepper
motor system) or a feedback clock (DC motor system). In either case,
once the desired amount of clock pulses have accumulated in the
counter, the laser firing card outputs a pulse, causing the laser to fire.

The programmable clock sources can be 1 axis or 2 axes. If 2 axes, it
can be any combination of X, Y, Z, U, V or W.

The laser firing will occur each time the axis or 2-axes combination
moves a distance equal to or greater than that which was specified in
the laser-firing command. The command can be cancelled by a new
laser-firing command or by a command to disable the function.

D. PROGRAMMING THE LASER FIRING CARD

As mentioned previously, the laser firing command is sent via the
parts program or the mdi mode. The command follows the I/O format
discussed in section 12-2B. To control the laser firing card via the /O
channel, send:

I/O ADDRESS HEX DATA COMMENTS
$6F9=H,nn ANALOG RANGE
$6FA=H,nn PULSE WIDTH MSB
$6FB =H,nn PULSE WIDTH LSB
$6FC=H,nn SPACING (DISTANCE) MSB
$6FD=H,nn SPACING (DISTANCE) LSB
$6FE =H,nn LASER FIRING CARD FORMAT

All of the 1O channel addresses shown above are fixed. The first
address controls the analog signal range. $6F9 =H,nn may range from
H,01 to H,FF. The second and third addresses control output pulse

-335-

CHAPTER 13: UNIDEX 16 OPTIONS

width, which may range from 1 .S to 65535 u.S. The first byte,
$6FA = H,nn may range from H,00 to H,FF. The second byte,
$6FB = H,nn may range from H,01 to H,FF.

The fourth address, 6FC = H,nn, is the high byte input data. (Bits 7 -
~ 4 are fixed at a value of zero.) This byte may range from H,00 to H,(F.

The fifth address, 6FD =H,nn, is the low byte input data. It may
range from H,01 to HLFF.

These two blocks give the distance traveled by the axes before the
laser is commanded to fire. The distance must be given in machine
steps which have been converted to hex numbers. This information
(S) is used in the vectorial distance calculation:

S< vIX? + Y]

Where:
S = Distance traveled (in machine steps) before laser fires
X= Accumulated clock pulses of axis 1
Y= Accumulated clock pulses of axis 2

The sixth address, $6FE = H,nn, can be broken down as follows:

BIT7: The warm-up puise will be sent if this bit is set to 0.
Warm-up pulse enabled means that as soon as the $6FE
command is sent the laser will fire, regardless of whether
the axes have begun to move or not.

1 = disabled 0 = enabled

CHAPTER 13: UNIDEX 16 OPTIONS

BIT 6: Laser firing enable. The laser firing enabled (Bit 6 is set

to 0) will allow laser firing to occur at the programmed
locations when the axes begin to move.

1 = disabled O = enabled

(If Bit 7 and 6 are enabled, the warm-up pulse will fire as
soon as the command is sent and the normal laser firings
will begin when the axes begin to move.)

BIT 5: W axis:0 = selected, 1 = not selected
BIT 4: V axis: 0 = selected, 1 = not selected
BIT 3: U axis:0 = selected, 1 = not selected
BIT 2: Z axis: 0 = selected, 1 = not selected
BIT 1: Y axis: 0 = selected, 1 = not selected
BIT O: X axis: 0 = selected, 1 = not selected

The following example will assume a 1:1 resolution, i.e., machine
steps and program steps will be of equal value.

EXAMPLE #1

N5 (IOFT,BIN,1) ; Select 1/O format

N9 $6F9=H,A3 ; Set highest data rate as
; 113000 steps/second

N10 $6FA=H,00 ; High byte pulse width =
00 (hex)

N11 $6FB=H,03 : Low byte pulse width = 03
(hex)

N12 $6FC=H,00 ; High byte spacing = 00
(hex)

N13 $6FD=H,05 ; Low byte spacing = 05
(hex)

-337-

CHAPTER 13: UNIDEX 16 OPTIONS

- Laser will fire when vectorial
; distance of 5 machine steps
; have been traveled.

N14 $6FE=H,BC ‘Bt76543210
: 10111100

N17 Gt X80. Y60. F100. ; Linear move
N40 M30 ; End of program

The above program segment will establish a laser firing command
every time the X/Y axes (N14, Bit 1=0 and Bit 0=0) make a vectorial
move of S machine steps (N13, H,05). It also calls for no warm-up
pulse (N14, Bit 7= 1) and enables the laser firing card (N14, Bit 6 =0).

The vectorial move would be determined as follows:

ssvX2+ Y]

The two axes’ counters’ (X and Y in this example) accumulate steps
proportional to what has been programmed. These steps are incor-
porated into the above formula. When the sum of each axis’ steps
squared is equal to or greater than the steps to travel before laser

firing (S) squared, the laser fires.

For example, the machine distance to travel before the laser fires
was programmed as 5 in the above program. The proportional XY
moves (reduced from X80, Y60) that will satisfy the above formula
when the laser is to fire every 5 machine steps are X4, Y3. Therefore,

S< v X+ Y]

The sample programming segment would cause the following move.
The laser firing occurs here every 5 machine steps, along the X/Y vec-
tor,

CHAPTER 13: UNIDEX 16 OPTIONS

Y
60 (X80,Y80)
50 :
40 :
30 :
20 _
10]

Lt A S S o e e e R 4

10 20 30 40 50 60 70 BO

You may also lock laser firing onto one axis. This would change the
distance between laser firing. For example, if everything was the same
in the sample program except:

N14 $6FE=H,BE

only the X axis would be enabled for laser firing and the previous
graph would now look like this:

=]
o

(X80,Y60)

] 2] [o
(=] (=] o [~

[T TN T N T T N Ty W ™"

(%
=]

rrrrrVv T r T rrrm X
10 20 30 40 50 60 7O 80

-339-

CHAPTER 13: UNIDEX 16 OPTIONS

The vectorial distance traveled is still X80, Y60. However, since the
laser firing is locked on the X axis, the laser fires when 5 machine
steps along the X axis have been traveled, rather than along the X/Y
vector as shown previously. How this changes the vectorial distance
between laser firings may be determined as follows.

The formula S< v/ [X2 + YZ] will demonstrate how many machine
steps along the vectorial path will be traveled before the laser fires.
To find the appropriate numbers to plug into this formula, divide the
X distance to be traveled before the laser fires by the total X distance
(in this case 5/80). Then find the proportional Y distance to be
traveled before the laser fires, i.c.,

Y/60 = 5/80

Y = 5/80 * 60
Y=5/4*3

Y =375

Since the distance is in whole steps only, the above result must be
rounded off. Therefore, Y equals 4, and:

S<v[X? + Y}
41 5% + 4
<41 = 64

The distance between laser firings is now 6.4 machine steps.

The following example demonstrates the same program, only this
time the laser firing is locked onto the Y axis.

The numbers for the S< v [X? + Y?] formula are found by divid-
ing the Y distance to be traveled before the laser fires by the total Y
distance (in this case, 5/60). Then find the proportional X distance,
ie.,

X/80 = 5/60
X = 5/60 * 80

CHAPTER 13: UNIDEX 16 OFTIONS

X=53*4
X = 6.667

Therefore,
S<v[X2+ Y]
74 <7 + 5°
<74 = 8.6

The laser firing now occurs every 8.6 machine steps along the X/Y
vector.

60 (X80,Y60)

1]

50

40 4

30

20

10 _

T I T A 1 e D ¢
10 20 30 40 50 60 70 80

NOTE: Remember that when making a vectorial move, if the 2 axes in-
volved are not the same resolution, compensations will have to be
made before programming.

-341-

CHAPTER 13: UNIDEX 16 OPTIONS

E. CIRCULAR INTERPOLATION WITH LASER FIRING

When programming the laser firing card during circular contouring,
"S" will be the linear distance in machine steps between output pulses,
as shown in the following illustration.

NOTE: Circular Interpolation is not allowad between 2 axes of different
resolutions.

Following in another example of laser firing:

EXAMPLE #2
(IOFT,BIN,1) $6FC=H,00
$6FD=H,05 ; Output C =5 to Laser Firing
Card
éBFE= H,BC ; Turn on Laser Firing Card.
Enable X/Y axes counts

G1 X40. Y30. F100.
G1 X5. Y-20. F30.
G1 X-15. Y-5. F30.

CHAPTER 13: UNIDEX 16 OPTIONS

G1 X-5. Y14. F30.
$6FE =H,FF : Turn off Laser Firing Card

10

10 20 30 40

NOTE: A Continuous Laser Firing Option is avallable. information will be
provided with the purchase of the option.

SECTION 13-14 SPINDLE FUNCTION D/A CARD (SD-A)

The purpose of the Programmable S-function D/A converter card is
to enable a digital S-function output from Unidex 16 to be converted
to an analog signal. The analog signal is used to control either a
unipolar or bipolar spindle, or other type of device requiring an
analog output signal.

A. TIMING

The timing diagram below illustrates the timing cycle utilized by
Unidex 16 when sending data to the S-function D/A card.

CHAPTER 13: UNIDEX 16 OPTIONS

Data Input

Strobe—-N Input

— i ol . —

{SSTB-N)

Acknowledge

Output

T1 Data to SSTB-N Low

T2 SSTB-N Low to

ACK-N Low

T3 ACK-N Low to
Strobe-N Hi

I
]
I

«— 11—+ T12 >|le—T13—

I
s
1
|

1msS typical, determined by Unidex 16 parameter
#402 (00001)

250 S typical, determined by "S" D/A board
debounce circuit M1 and C17

1 mS typical, determined by Unidex 16
parameter #410 (00001)

NOTE: Standard Unidex 16 default value for parameters 402 and 410 Is
00010 for 10mS. Although 10mS for T1 and T2 will operate properly
with the "S* D/A board, it is not optimum timing.

Appendix 1

ASCII Character Set

APPENDIX 1: ASCTI CHARACTER SET

HOY NaOQ HOSHAD a0 = Hod / /
Ha® dn 4osd0d a4 - HL i Fid :
AAGESIY IANASTY as [Hod - -
Hi¢ HHO T3d LINS 2 M Hvo : a2 N
AYISAL SALIETY a9 3! + +
Had [o 1 HOY . .
Hve i a0 i Hao * m
Hed X 00 X HEX1
Hze i i A HivV . .
MZY A % i Hod L »
Hoq n -] n He2 X H
oo L L) 1 nov u m
HOV 8 £e [H10
HZL d4 29 4 Hlo . .
wed 1] 19] Hild ! i
e d ot d H2¢ 1vds 1VdS
F73 aq HYE [¥ 0 H8d IS TOAD LdHE £
a ~ HOq N ar N HOY 39vd AZid =l
aL (1) X ar n Haq #ovd LN &8
oL HET 1 ar 1 HED VLS JAD [
N HoZ b a» b 1 2AMIETH SAREGI 263
2 z HeS 3 w [Had qvL ans
8L £ Hat 1 oy 1 HYC Dd Add LiNE L
o x HOS i " H HI4 Dd LN LiHE NYD
i . HYD L) Ly [} HAD dn Tiod Ly
8 I3 HOS Fi oy I JAMBEIM FAMISTY NAB
oL - Had H 9 1 HEZ NT ¥D LiHS VN
" 3 HrL q " q PV e T4 aNR 4
' . Hoy 5 <y 3 ZANIEIH ado-X £
E7) : HFYY a P14 q HG vl Xove ©q
1L b H2e ¥ 114 ¥ FANEERY No-X 104
oL 4 AANAET TAdIETY or [) [+13 YYED> Tad ™
o o HYa L it 1 2ANISTY J40 LIONTM 15
w ® HoY < % < HOk INOH o8
ap w Hee = at = Hzo YIINS)
20 1 HoZ > ae > S LHOM HOSHAD a
g9 a H*2 ! a ‘ FANAST NO LLONT 1a
Yo Hig : Ve : AAESTY GELLNTT Fit
@ ' HyYY [o [} FANTETY U4 ONE 1N
o0 g H¥D & e " HzE LIFT 4060) s
29 1 HH & L8 L 13534 Lasdd 134
09 } HOod 0 % 8 HYD 9 AINLdOR oV
[» HE0 S o8] KErd 9 ATALIOS bud
" P HoL ¥ " ’ HO9 ¥ ATALIOR Lod
co » Hre] cs £ HOa £ AZNLIOR X13
20 q e z P z Hod 3 ADNLIOS 118
» . Hrq I % t HOL 1 AdNIdOS HOS
a9 ' HOE [ot o FABASTE FANTSTH N
d HO ¥ QEVORATE qH0 Y AIVOSATY
EL3O4 Modd nOdd 3003 §L40d MOdd nowd 3403
4000 XAH 310D NI6Y XIH 91 XA4INN 2000 XaH I40D IDEY o] 9% XIGINN

APPENDIX 1; PAGE 1

Appendix 2

Hexadecimal Numbers
and
Equivalents

HEX NUMBERS AND EQUIVALENTS

.
»

APPENDIX 2

42 11100171 L02 a6 11011001 esl 48 11100110 €07 €6 11007700 18
423 0TIT00TI 90g ¥é 071011001 ¥G1 Q9 0Ti00170 201 ¢t 01001100 0%
a2 101710017 <02 66 10071001 £C1 <9 10100110 101 1€ 10001100 114
22 001100171 02 g8 00017001 44 | 9 00100310 001 0t 0000TTOD 14
dd TTITIVTY e62 g2 11070017 €02 L8 T110100} 161 €8 11000110 86 dg 11110100 LY
g4 OTITIIIl (414 ¥) 01070017 202 968 01101001 (131 <o a1000110 28 42 OTITO0T00 or
ad 10111111 £Se 8) 100100171 10¢ c8 107101001 ¥l 19 10000710 L8 az 10110100 oy
24 QOITIITL gse 8) 00010017 002 ¥8 00701001 '] 8¢ 09 00000710 98 Je 007107100 144
ad TT0TITTL 162 L) 11100011 881 €6 TI00T00T Lri d$ Tirtiolo <6 a2 11010700 14 4
vd 01071111 ose 80 OT10001T g61 26 01001001 orl a$c O1111010 e Ve 01010100 14
6d 10071171 6¥2 S T01000TT 481 I8 10001001 14} as 10171010 £é 62 10010100 114
8d 0Q0TITT! ore ¥ 00100017 961 068 00001001 L4l J5 Qo111010) 8z 00010700 or
&4 TITOITTY i¥e €2 1100001% 1] de 11110001 £¥l as 11011010 I8 L2 11100100 8t
94 O0IT0RTTY 0¥ 22 01000011 ¥81 ae oT1110007 orl V6 or1ort0IO 08 62 0IT00T00 1A
Sd TOTOIITT ove 12 10000071 661 ae 10176001 134 i34 10015010 68 gz To0to0100 AE
¥d 00101111 ¥ 03 00000071 281 a8 001710001 or1 &g 00013010 o8 ¥ 00100100 ot
£d 1¥00111T e¥c 44 11111100 181 g8 11070001 .1 LS ¥itoJ010 L8 g2 11000100 <t
ed 000111} Zve ad or1tIrv0t1 081 yg 01010001 el 8s orI1oiolo o8 ¢z 01000100 (7
14 T0001YT1 I¥e cd 10111107 881 68 10010001 LET oS 10101070 o8 12 100600100 £e
0d 00001111 o¥e JE O0TTTT0T ea1 88 000710001 8t} ¥ 00107010 e 0g 00000100 45
J3 ITI107T7 6E2 g4 TI0TTTOT 481 48 TT100007 sel ¢ 11007070 =] 4T 17111000 | £+
2 O0TIT0TT1 gee vd OI0ITIOT 0817 98 0TT0000I ¥el oS 07100TOTO < a1 071111000 0g
ad 1o1toIiy LES 6d 10017107 sa1 S8 TOT00001 1543 § 15 10007010 18 ar 10111000 62
od 007110117 9ee gd 00C0ITIOI ¥81 ¥8 00700001 el 0% 00001010 o6 atr 00111000 g2
gad {10011y seS AH 11107101 £81 £8 11000001 1€7 J¥ 11110010 8L a1 170711000 [%4
¥d 01030117 ¥ec 9d 017101107 281 cg8 01000001 0ET ar oTIr007I0 2L V1 07075000 8z
84 10010717 £sz cd TO0TO0TION 181 18 10000001 el ar 10110010 Al a1 10071000 1
gd 00070111 cee ¥ 00701101 081 08 00000001 8zl oF 00150010 8L 81 00071000 2
LT TTITOOTTI 1£2 ed TI1001101 8L1 d4 TITIII10 el ar 11070070 GL LT 11101000 €e
84 01100171 ote ¢d 01007101 8Ll 3, otI1i1TnO 2 | vr o10l00I0 W ol 01101000 22
¢d 10700171 a2 g 10007701 L1 as 10111710 gzl ar 10070010 €L ST 10701000 12
¥4 00100171 gee 0d 0000TI0F 9Ll 34 00711110 el 14 00010010 2L ¥ 00101000 0z
€d 11000171 ige ¥ TITIDI08 1A g4 11011110 £a1 Ly 11100010 T4 €1 11001000 81
cd 01000171 9ee ¥ 01110107 FLl ¥i 010117170 2al or 01100010 oL 2T 01007000 g1
T4 10000711 gec Qv 10Ti0103 ELl 64 TOOTIVIIO 121 Sy 10100010 a9 BT 10001000 LI
0od 00040777 ¥ee AV 00710107 Ll 84 00011710 0gl 144 00100010 a9 o 00001000 1}
A0 1111070 £ge gy 110io0v01 141 AL 1T101T10 811 £y 11000010 L9 46 11110000 14
ad oTTL10IT cee Vv 01010707 0Ll 84 OTTOITIC a1T or 01000010 99 30 01110000 14
ca 101E1077 122 8V 10010101 691 oL 10101TIC 411 134 10000010 oo a® 101710000 e1
20 00111011 0ce 8y 000107101 891 ¥4 00101110 218} o¥ 00000010 2] 20 00150000 21
aa 11011011 812 LY 11100101 401 g4 11001170 SIt Je TRIEITO0 9] a0 11010000 11
va 01011077 gl 9y 01100101 981 ¢4 01001170 11 ag O§T11100 20 Y0 01010000 o1
6d 10010717 Llg cY 10700101 col T4 TOO0QTITID eIl as 10111100 5] 60 10010000]
8d 00011077 ol ¥¥ 00100707 ¥91 0L 00001110 cll ot 00111100 (14} g0 00010000 a
La 11101071 gl EY 11000101 £01 40 1IT101%0 |29 ac 11017100 (3 L0 11100000 &
9ad 01101077 ¥ie av 01000701 el 49 01110110 o1t Ve 010171100 3] 80 07100000]
Sq 101071017 34 ¢4 ¥ 10000101 131 ag 710110110 aat 8t 10011100 [A %0 10100000 <
¥d 001010717 el oV 0oo0otaT 01 29 00110110 2ol 14 00011100 9% ¥0 00100000 ¥
£4a 11001071 1ie d68 11171007 3] a9 110101310 L01 ie 111071100 oS €0 11000000 €
cd 01001011 o1e 46 OT131007 851 Yo 01010110 801 ot 01107100 ¥S <0 01000000 <
14 100010717 602 as T1orftTo01 FAH 89 10010110 501 ce 16101100 €9 10 16000000 I
0a 00001077 80e J6 O00TFT100T 941 89 00010110 ¥al 144 00107100 4] 00 00000000 0
XIH AdvNIid TVHIDAQ | XdH AdYNIE ‘IVHIOEA | XAH AYYNID 'TVWIOEQ | XJH AUVNIE 'TVNIDEQ | XIH AMVNIA ‘TVNIOAd

i

PAGE 1

APPENDIX 2

APPENDIX 3

Sample Programs

APPENDIX 3: PROGRAM EXAMPLES

SAMPLE 1
filc name: SINE
filetype: PP
length (bytes): 1385
last edit date: 2-1-85
%SINE DRAWING PROGRAM
(DVAR,ANGLVARA,VARL,VARP,VAR],VAR2 VAR3,VAR4,VARS)
(REF,X,Y,Z) ' ; GO HOME
G24 : NON-CORNER ROUNDING
G0 X12.0Y-8.0 ; HOME OFFSET
G0 Z-50 ; ZOFFSET
G2 s RESET POSITION REGISTERS
G1F200.0 ; LINEAR MODE 200 IPM
Go1 ; INCREMENTAL MODE
Z10 ; PENUP
X-3.0Y0 ;
Z-10 3
X6.0Y0 ;
210 ; DRAW X AND Y AXES
X-30Y-30 ;
Z10 H
X0Ye6.0 H
710 ;
VARA =15 ; AMPLITUDE
VARI=10 : X INCREMENT
VARP=10 ; PERIOD
ANG1=-360 ; STARTING ANGLE
X-3.0Y-30 : STARTING POINT
Z-10 ; PEN DOWN
G23 F350 ;
VAR3=0 H
VAR1=INT(10000* VARA*SIN(VARP*RAD(ANG1))) ;Y START
VAR4 = INT(30000* VAR3)/360) ; X START
(DENT,ENT1) ;
ANG1=ANG1+VARI ; INCREMENT ANGLE
VAR3=VAR3+VARI ; INCREMENT X
VARS = INT((30000* VAR3)/360) < X FINISH

VAR2 = INT(10000*VARA*SIN(VARP*RAD(ANG1))) ;Y FINISH

APPENDIX 3: PAGE 1

APPENDIX 3: PROGRAM EXAMPLES

X = (VARS-VAR4)/10000 ; XY MOVE

Y = (VAR2-VAR1)/10000

VAR1=VAR2 VAR4=VARS - INCREMENT Y POSITION
(JUMP,ENTLANG1.LT.360) - KEEP GOING UNTIL ANG .GE 2 PI
(REF,Z) ; ZHOME

M30

APPENDIX 3: PAGE 2

APPENDIX 3: PROGRAM EXAMPLES

SAMPLE 2
file name : COSINE
file type : PP
length (bytes) : 1354

last edit date : 2-1-85

%COSINE DRAWING PROGRAM
(DVAR,ANG1,VARA,VARL,VARP,VAR1,VARZ,VAR3,VAR4,VARS)

(REFX,Y,Z) ; GO HOME

G24 ; NON-CORNER ROUNDING
G0 X12.0Y-8.0 ; HOME OFFSET

GO0Z-50 ;s ZOFFSET

G992 ; RESET POSITION REGISTERS
G1F200.0 ; LINEAR MODE 200 IMP
G91 ; INCREMENTAL MODE
Z10 ; PEN UP

X-3.0Y0 ;

Z-1.0 H

X6.0Y0 }

Z10 ; DRAW X AND Y AXES
X-30Y-30 R

Z-10 ;

X0Y6.0 ;

Z10 ;

VARA=15 s AMPLITUDE

VARI=10 : X INCREMENT
VARP=10 ; PERIOD

ANG1=-360 : STARTING ANGLE
X-3.0Y-15 ;

Z-10 ; PEN DOWN

G23F35.0 ;

VAR3=0 H

VARI1 = INT(10000* VARA*COS(VARP*RAD(ANG1))) ; Y START
VAR4 =INT(30000*VAR3)/360) ; XSTART

(DENT,ENT1) ;

ANG1=ANG1+VARI s INCREMENT ANGLE
VAR3=VAR3+ VARI : INCREMENT X

VAR2 =INT(10000* VARA*COS(VARP*RAD(ANG1))) ;Y FINISH
VARS = INT{(30000* VAR3)/360) ; X FINISH

APPENDIX 3: PAGE 3

APPENDIX 3: PROGRAM EXAMPLES

X = (VARS-VAR4)/10000 Y = (VAR2-VAR1)/10000 : XY MOVE
VAR1=VAR2 VAR4 = VAR5 . INCREMENT XY POSITION
(FJUMP,ENT1,ANG1.LT.360) : KEEP GOING UNTIL ANG .GE 2PI
(REF,Z) : Z HOME

M30

APPENDIX 3: PAGE 4

APPENDIX 3: PROGRAM EXAMPLES

SAMPLE 3

file name : SPIRAL
file type : PP
length (bytes) : 1384
last edit date : 3-1-8B5

%SPIRAL DRAWING PROGRAM
(DVAR,ANG1,VAR1,VAR2,VAR3,VAR4,VARLVARC,VARS)

(REFX.Y.Z) ; GO HOME

G24 ; NON-CORNER ROUNDING
G0 X120Y-80 ; HOME OFFSET

GO Z-5.0 ; ZOFFSET

G2 : RESET POSITION REGISTERS
G1 F200.0 : LINEAR MODE 200 IPM
G91 : INCREMENTAL MODE
Z10 ;s PEN UP

X-3.0Y0 ;

Z-1.0 ;

X6.0Y0 ;

Z10 ; DRAW X AND Y AXES
X-30Y-30 ;

Z-1.0 :

X0Y6.0 ;

Z10 3

Y-3.0 ; STARTING POINT
ANG1=0 s STARTING ANGLE
VARC=3 ; NUMBER OF CYCLES
VARI=10 ; INCREMENT OF ANG1
VARS =50.0 : SCALING FACTOR
Z-10 ; PEN DOWN

G23F50.0 ;

VAR1 = INT(10000* (VARS*RAD(ANG1/360)*COS(RAD(ANG1))))
VAR2 = INT(10000*(VARS*RAD(ANG1/360)*SIN(RAD(ANG1))))
(DENT,ENT1)

ANG1=ANG1 + VARI : INCREMENT ANGLE

VAR3 = INT(10000*(VARS *RAD(ANG1/360) *COS(RAD(ANG1))))
VAR = INT(10000° (VARS*RAD(ANG1/360) *SIN(RAD(ANG1))))

X =(VAR3-VAR1)/10000 Y = (VAR4-VAR2)/10000 : XY MOVE
VAR1=VAR3 VAR2=VAR4 : INCREMENT POSITION
(JUMP,ENT1,ANG1LT.(VARC*360)) ; KEEP GOING UNTIL 2 CYCLES

APPENDIX 3: PAGE 5

APPENDIX 3: PROGRAM EXAMPLES

(REF,Z) ; ZHOME
M30

APPENDIX 3: PAGE 6

APPENDIX 3: PROGRAM EXAMPLES

SAMPLE 4

file name : ELLIPSE
fletype : PP

length (bytes) : 1217
last edit date : 2-1-85

%ELLIPSE DRAWING PROGRAM
(DVAR,ANG1,VARR,VAR1,VAR2,VAR3,VAR4,VARA,VARB)

(REF,X,Y,Z) ; GO HOME

G4 ;s NON-CORNER ROUNDING
G0X120Y-80 ; HOME OFFSET

GOZ-50 ; ZOFFSET

G92 ; RESET POSITION REGISTERS
G1F200.0 ; LINEAR MODE 200 IPM
G91G23 s INCREMENTAL MODE
Z10 ; PENUP

X-3.0Y0 H

Z2-10 3

X6.0Y0 ;

Z10 : DRAW X AND Y AXES
X-3.0Y-30 H

Z10 ;

X0Y60 :

Z10 ;

X2.0Y-30 ; STARTING POINT

2-10 ; PEN DOWN

G23F35.0 ;

VARA =20 ; RADTUS ON X AXIS
VARB=10 ; RADIUS ON Y AXIS
ANG1=0 ; STARTING ANGLE
VAR1 = INT(10000* VARA*(COS(RAD{ANG1)))) ; Y START
VAR2 =INT(10000* VARB*(SIN(RAD(ANG1)))) s+ X START
(DENT,ENT1)

ANGI=ANG1+1

VAR3 = INT(10000* VARA*(COS(RAD(ANG1)))) ;'Y FINISH
VAR4 = INT(10000* VARB* (SIN(RAD(ANG1}))) ; X FINISH
X =(VAR3-VAR1)/10000

Y = (VAR4-VAR2)/10000

VAR1=VAR3 VAR2=VAR4

(JUMP ,ENT1,ANG1.LT360)

APPENDIX 3: PAGE 7

APPENDIX 3: PROGRAM EXAMPLES

(REF,Z) : Z HOME
M30

APPENDIX 3: PAGE 8

APPENDIX 3: PROGRAM EXAMPLES

SAMPLE 5

file name : PARABO
filetype : PP

length (bytes) : 1027
last edit date : 2-1-85

%PARABOLA DRAWING PROGRAM

(DVAR,VAR1,VAR2)

(REF,X,Y,Z) ; GOHOME

G24 s NON-CORNER ROUNDING
G0 X120 Y-8.0 ; HOME OFFSET

G0 Z-5.0 ; ZOFFSET

G92 ; RESET POSITION REGISTERS
G1F200.0 ; LINEAR MODE 200 IPM
G91 : INCREMENTAL MODE
Z1.0 ;s PENUP

X-30Y0 ;

Z-1.0 ;

X6.0Y0 ;

210 ; DRAW X AND Y AXES
X-3.0Y-3.0 ;

Z-10 4

X0Y6.0 ;

Z10 ;

VAR1=10

VAR2=10

G900 X=-14142Y=30

G91

(CLS,SUBL,VAR1,VAR2)

G X=-14142Y=-30

G91

(CLS,SUBL,-VAR1,-VAR2)

G90 X0 YO

(REF,Z)

M2

(DFS,SUBLVAR3,VAR4,XPOS,SVR1,SVR2,VARI

XPOS =-1.4142

VARI=0.01

Z10

G23 F50.0

" APPENDIX 3: PAGE 9

APPENDIX 3: PROGRAM EXAMPLES

SVR1=INT(10000*((VAR3*(XPOS*XPOS)) + VAR4))
(DENT,SENT)

XPOS = XPOS + VARI

SVR2 = INT(10000*((VAR3*(XPOS* XPOS)) + VAR4))
X = VARI Y = (SVR2-SVR 1)710000

SVR1=SVR2

(JUMP,SENT,XPOS.LT.1.4142))

G24 F200.0

Z10

)
M30

APPENDIX 3: PAGE 10

APPENDIX 3: PROGRAM EXAMPLES

SAMPLE 6
file name : HYPER
filetype : .PP
length (bytes) : 1220

last edit date : 2-1-85

%HYPERBOLE DRAWING PROGRAM
(DVAR,VARLVAR?)
(REF,X,Y,Z)

G24

GO X120 Y-8.0

G0 Z-5.0

G2

G1F200.0

Go1

Z10

X-3.0 YO

Z-1.0

X6.0 Y0

Z1.0

X-3.0 Y-3.0

Z-1.0

X0 Y6.0

Z10

VAR1=10

VAR2=0.75

G90 X =VARI1 Y0

G91
(CLS,SUBL,VAR1,VAR?)
G90 X =VAR1 Y0

91
(CLS,SUB1,VAR1,-VAR2)
G9 X=-VAR1 Y0

Go1
(CLS,SUB1,-VAR1,VAR2)
G90 X =-VAR1 Y0

G91
(CLS,SUB1,-VARL,VAR?)
G90 X0 YO

APPENDIX 3: PAGE 11

APPENDIX 3;: PROGRAM EXAMFLES

(REF,Z)
M2

(DFS,SUBLVAR3,VAR4,ANG1,SVR1,SVR2,SVR3,SVR4,VARI
ANG1=0

VARI=10

Z-10

G23 F50.0

SVR1=INT(10000*(VAR3/COS(RAD(ANG1))))

SVR2 = INT(10000*(VAR4*(SIN(RAD{ANG1))/COS(RAD(ANG1)))))
(DENT,SENT)

ANG1=ANG1 + VARI

SVR3 = INT(10000* (VAR3/COS(RAD(ANG1))))

SVR4 = INT(10000* (VAR4* (SIN(RAD(ANG1))/COS(RAD(ANG1)))))
X =(SVR3-SVR1)/10000

Y = (SVR4-SVR2)/10000

SVR1=SVR3 SVR2=SVR4

(JUMP SENT,ANG1.LT.71)

G24 F200.0

Z1.0

)
M30

APPENDIX 3: PAGE 12

APPENDIX 3: PROGRAM EXAMPLES

APPENDIX 3: PAGE 13

APPENDIX 3: PROGRAM EXAMPLES

SAMPLE 7
file name : MIRROR
filetype : PP
length : 1650

last edit date : 5-5-82

%MIRRORED SPIRAL DRAWING PROGRAM
- (DVAR,ANG1,VAR],VAR2 VAR3,VAR4,VARL,VARC,VARS,CNT 1,MIR1,MIR2 MIR3)

(REF,X.Y) ; GO HOME

G24 ; NON-CORNER ROUNDING
G0 X6.0 Y40 ; HOME OFFSET

G992 ; RESET ABSOLUTE POSITION REGISTERS
G1F100.0 s LINEAR MODE 100 IPM
GI1 + INCREMENTAL MODE
Z10 :PEN UP

G4 F).5 :

X-3.0Y0 ;

Z10 H

G4 ¥0.5 :

X6.0Y0 ;

Z10 :DRAW X AND Y AXTS
G4 FO.5 ;

X-3.0Y-30 ;

Z-10 ;

G4F05 :

X0 Y6.0 :

Z10 ;

G4 F0S5 H

Y-3.0 ; STARTING POINT
CNT1=0 H

(DENT,ENT2) ;

ANG1=0 : STARTING ANGLE
VARC=3 : NUMBER OF CYCLES
VARI=10 s INCREMENT OF ANG1
VARS =500 ; SCALING FACTOR
Zz10 ; PEN DOWN

G4 F0.5 ;

G23 F25. :

VAR1 = INT(10000*(VARS(RAD(ANG1/360)*COS(RAD(ANGL))))
VAR2 = INT(10000*(VARS *RAD(ANG1/360) *SIN(RAD(ANG1))))

APPENDIX 3: PAGE 14

APPENDIX 3: PROGRAM EXAMPLES

(DENT,ENT1)

ANG1=ANG1+ VARI : INCREMENT ANGLE

VAR3 = INT(10000*(VARS*RAD(ANG1/360)* COS(RAD(ANG1))))

VAR4 =INT(10000*(VARS*RAD(ANG1/360)*SIN(RAD{ANG1))))

X = (VAR3-VAR1)/10000 : XY MOVE

Y = (VAR4-VAR2)/10000

VAR1=VAR3 VAR2=VAR4 : INCREMENT POSITION

(JUMP,ENTLANGLLT.(VARC*360)) :KEEP GOING UNTIL 2
CYCLES

Z=10

G4 FO.5

CNT1=CNT1+1

(JUMP,MIR1,CNT1.EQ.1)

(JUMP,MIR2,CNT1.EQ.2)

(FUMP,MIR3,CNTLEQ.3)

(REF.X,Y)

M2

(DENTMIR1)
(MIR,X1,Y0)
G90 X0 YO
G91
(JUMP,ENT?)
(DENT,MIR2)
(MIR,X1,Y1)
G90 X0 YO
Go1
(JUMP,ENT2)
(DENTMIR3)
(MIR,X0,Y1)
G90 X0 YO
Go1
(JUMP,ENT2)
M30

APPENDIX 3: PAGE 15

\@
f\\

Appendix 4

Command and
Parameter
Summary

APPENDIX 4: COMMAND & PARAMETER SUMMARY

UNIDEX 16 MACHINE G-CODES

CODE# CODE TYPE CODE OPERATION

G(O/HO Modal Rapid traverse positioning. Traverse rate is parameter
#240/241.

G1/H1 Modal Linear contour with constant vectorial velocity

G2/H2 Modal Circular CW contouring. ITK/QPR used for incremen-
tal arc centers.

G3/H3 Modal Circular CCW contouring. LUK/QPR used for incremen-
tal arc centers. Polar coordinates use L/O = radius,
C/A =start. angle, D/B = end angle.

G4 Own block Dwell delay. Follow by F code of duration in seconds.
(For example, G4 F100.)

G8/H8 Block Acceleration on. Parameter 250 = auto; 251, 252 =rate,
510, 511 =threshold feedrate.

G9/H9 Block Accel/Decel on. Parameter 250 = auto; 251, 252 =rate;
510, 511 =threshold.

G17/H17 Modal Select X and Y/U and V to be on same plane for cir-
cular interpolation.

G18/H18 Modal Select X and Z/U and W to be on same plane for cir-
cular interpolation.

G19/H19 Modal Select Y and Z/V and W to be on same plane for cir-
cular interpolation.

G23/H23 Modal Selects corner rounding mode.

G24/H24 Modal Cancels corner rounding mode.

G40 Modal Cancel/turn-off cutter radius compensation/ offset.

G41 Modal Turn on cutter radius compensation to the LEFT side of
workpiece.

G42 Modal Turn on cutter radius compensation to the RIGHT side
of workpiece.

G70/H70 Moda} Select English Programming units. 1=.0001 inch,
1.0=1.0000 inch.

G71/H71 Modal Select Metric programming units. 1=.001 mm,
1.0=1.000 mm.

APPENDIX 4: PAGE 1

APPENDIX 4: COMMAND & PARAMETER SUMMARY

G76 Own block Circular Peck Drilling canned cycle. L=radius,
C = #holes, D =angle, Z = depth, F =feedrate,
S =spindle rpms
G77 Own block Circular Pocket Milling canned cycle L=radius (+ =

CW, - = CCW), I = Increment per cutter pass,
F =feedrate, S =spindle rpms

G78 Own block Rectilinear Pocket Milling canned cycles X =X radius
(+ =CW, -=CCW), Y =Y radius, I =increment X-
axis, J = increment Y- axis, F =feedrate, S =spindle

Tpms -
G80 Modal Cancel canned cycles G81-G85
G81 Modal Linear Peck Drilling canned cycle X = axis length,

Y =axis length, Z = axis depth, R =Z return,
C = #holes, D = dwell, F =feedrate, S =rpms

G82 Modal Stop Peck Drilling canned cycle. Same as G81 except
spindle stops at hole bottom.
G83 Modal Incremental Peck Drilling canned cycle. X =axis

length, Y = axis length, Z = axis depth, R =Z return,
I=peck length, J =peck return, C=#holes, D = dwell,
F =feedrate, S=rpms

G84 Modal Reverse Peck Drilling canned cycle. Same as G81 ex-
cept spindle reverses at hole bottom.

G85 Modal Slow Peck Drilling canned cycle. Same as G81 except
Z- axis return from hole bottom is at slow speed.

G90/H90 Modal Absolute programming

G91/H91 Modal Incremental programming (default)

G92 Immed Preload programmed axis position registers

G98 Modal G81-G85, R return point override on Z axis. Returns to
starting Z depth.

G99 Modal GB81-G85 use R temporary return point on Z axis.

/ Block Conditional block delete, when front panel Block

Delete Switch is On. First character in block.

APPENDIX 4: PAGE 2

APPENDIX 4: COMMAND & PARAMETER SUMMARY

UNIDEX 16 ADVANCED PROGRAMMING

VARIABLE NAMES -

SUBROUTINE/ENTRY
POINT NAMES -

CONSTANTS -

ABSOLUTE POSITION
REGISTER VARIABLES -

RELATIVE POSITION
REGISTER VARIABLES -

MATH OPERATIONS -

TRIG OPERATIONS -

CONVERSION
OPERATIONS -

NOTE:

2 to 4 characters. First two must be alphabetic upper
case (ABCD, VAR], PT10, etc.) ($Gnn specifies a
global variable, where nn is a number which designates
the variable label.)

4 characters, alphanumeric uppercase. (ABCD, 1234,
STRT, etc.)

3.2914 = real constant, all integers converted to real.
VAR1 =12 same as VAR1=12.0 ; "TABCD" = ASCII
constant (4 chars. max) ; H,1234 = hex/binary constant
(8 digits max).

$XAP (X-axis) SYAP (Y-axis) SZAP (Z-axis) SUAP
(U-axis) SVAP (V-axis) SWAP (W-axis)

$XRP (X-axis) SYRP (Y-axis) $ZRP (Z-axis) SURP
(U-axis) SVRP (V-axis) SWRP (W-axis)

ABS(x) (absolute value of X); SQR(x) (square root of
X); INT(x) (integer of X); ! (exponential); * (multiply);
/ (divide); + (add); - (subtract).

SIN(x) (sine x); COS(x) (cosine x); TAN(x) (tangent x);
ATN(x) (arctangent x).

DEG(x) (radians to degrees); RAD(x) (degrees to
radians); BTF(x) (binary to floating); FTB(x) (floating
to binary).

Above operations apply only to real variables and constants.

APPENDIX 4: PAGE 3

APPENDIX 4: COMMAND & PARAMETER SUMMARY

UNIDEX 16 RS-447 COMMANDS

CMD USEAGE

COMMAND OPERATION

ABTS (ABTS xxx)

ADTC (ADTC,D,X65,F1.)

CCp (CCP,T1,0.15,13,0)
CIRQ (CIRQ,0pt, XXXX)
CLS (CLSxox,parm1)
CMD (CMD,..message..)
DATA (DATA,..text..)
DISP (DISP,...message..)
DENT (DENT x0cx)
DFLS (DFLSxx,pl *-)*
DFS (DFSxxx,pl *--)*

Abort subroutine - returns to given entry point. Allows
xoxx = #VAR1 B
Programmable accel/decel time constant in mil-
liseconds. D =defaults. F or E = vector feedrate
threshold in inch/min or mm/min. G70/G71.

Cutter compensation to tool diameter (modal)

MST bus interrupt enable. Options 0-5. Refer to INTx
command.

Call subroutine with multiple parameters. Allows

xoxx = #VARI1.

Message to external hardware when handshaking is re-
quired. The CMDS command is similar to CMD, but
waits for a Service Request before going to next block.
Will permit a parts program to write data to a dedicated
file called DATAFILE .PP in memory. You may then
rename and edit file.

Message may be sent to screen to be included as one of
the machine mode displays.

Define an entry point.

Define library subroutine (restores machine status to
that in effect before call)

Define subroutine with variable parameters defined im-

plicitly.

DVAR (DVAR,varl,var2) Define variables.

INTq (INT2,0pt,o0x) Programmable interrupt enable. q=1-4. Opt 0=dis-
able, 1 =data/nxt blk, 2 =abort/nxt blk, 3 =abort/no
rtn, 4 =finish/ nxt blk, 5 = finish/no rtn.

IOFT (IOFT,BIN4) I/O channel data format, 1-4 bytes of binary or BCD
data (modal).

JUMP (FUMP,ox, X.GT.Y) Jump to defined entry point if condition is true. Allows
xx=#VARI1.

MIR (MIR,X1,Y0) Mirror axis image. 1=0, 0=off (modal)

APPENDIX 4: PAGE 4

APPENDIX 4: COMMAND & PARAMETER SUMMARY

MSG (MSG, < ABxx > ,text) CRT message (xx=seconds). If A or B, then output to
ports also. Wait for cycle-start if no xx time exists.
Cycle- start aborts wait. #VAR1 in text displays real,
#H:VARI1 for hex, #C:VAR1 for char. For input, use
variables within < AB,varl>.

REF (REF,X,Y,Z) Go Home. Simultaneous axis home using parameter
rates and offsets.

RPT (RPTxx *--)* Repeat loop for xx times.

SCF (SCF,X0.33) Set axis scaling factor (modal)

SCO - (SCO,1) Set all axis scaling on/off (modal)

SYNC (SYNC,1) Six axis synchronized contouring, 1 =on, 0 =off (modal).

UMFO (UMFOx,100) MFO switch control, x=1 disables MFO front panel
switch. X =0 enables front panel switch. Disable fixes
feedrate at from O to 200% of programmed rate.

UMSO (UMSOx,150) MSO switch control, X = 1 disables MSO front panel
switch. X =0 enables it. Disable fixes spindle speed at
from 0 to 200% of programmed rate.

UNIDEX 16 MACHINE M-FUNCTIONS

CODE RESTRICTIONS CODE OPERATION

MO —-— Program stop. Cycle start resumes. Parameter #442
controls options.

M1 -— Optional stop. Front panel switch enable. Uses
parameter #442 also.

M2 -— Program end. Parameter #442 controls options.

M3 MTI board only Spindle CW on (once/per/rev spindie types only).

M4 MTI board only Spindle CCW on (once/per/rev spindle types only).

M5 MTI board only Spindle off.

M7 MT1 board only Coolant #1 on.

M8 MTI board only Coolant #2 on.

M9 MTI board only Coolant off.

M10 MTI board only Spindle clamp on.

M1i1 MTI board only Spindle clamp off.

APPENDIX 4: PAGE 5

APPENDIX 4 COMMAND & PARAMETER SUMMARY

End of Programmed data. Parameter #442 controls op-
tions.

Low range spindle speed select.

High range spindle speed select.

RPM down spindle speed changer. Continues down
until M44 command.

RPM up spindle speed changer. Continues up until
M4,

Spindle speed changer stop.

Return to program start.

UNIDEX 16 LOGIC PROGRAMMING

M30 ——

M40 MTI board only
M4l MTI board only
M42 MTI board only
M43 MTI board only
M44 MT1 board only
M47

BINARY AND REAL -
REAL ONLY -

BINARY ONLY -

NOTE:

NOTE:

APPENDIX 4: PAGE 6

EQ. (equal to) .NE. (not equal to)

.GT. (greater than), .GE. (greater or equal to), .LT.
(less than), .LE. (less than or equal to)

HI. (higher than), .LS. (lower or same), .ADDx. (binary
addition), .SUBx. (binary subtraction), .ANDx. (AND
operation), .ORx. (OR operation), NOTx. (NOT opera-
tion), .XORx. (Exclusive OR), .LSLx. (logical shift left),
LSRx. (logical shift right), ROLx. (Rotate left),
RORx. (Rotate right).

X = 1-4 bytes; no X defaults to one byte.

TSTAx0x (test AND function) needs 2 operands in a
specific order. If all bits tested are 1, then result is true.

-TSTOxxxx (test OR function) needs 2 operands in a
specific order. If any bits tested are 1, then result is true.

Above two operations apply to all bytes of binary variables and con-
stants.

APFENDIX 4: COMMAND & PARAMETER SUMMARY

UNIDEX 16 EEPROM PARAMETERS

PARA# DEFAULT DATA PARAMETER DESCRIPTION

100 65535 End address of users RAM; add 32768 for each addi-
tional 32K of RAM.

101 60 Time after which CRT blanks to save CRT screen.

102 00000000 Soft key attributes 00000010 = underlined; 11000000
= reverse video; 00000000 = not underlined.

110 00001001 ASCII character signaling transmission end of a single
file.

111 00010100 ASCII character signaling transmission end of all files.

112 002 Status line alarm message duration 0-254 seconds,
255 =infinite

120 00000 Real time clock option; 00000 = no real time clock;
00001 = real time clock.

121 00000001 Reserved for future 25 pin J5 control: 00000000 =
Parallel Keyboard; and 00000001 = Joystick or Axis
Calibration.

122 000 Reserved

130 007 Disk drive format (1-9).

131 000 Reserved

132 000 Reserved

140 000 Reserved

141 00000000 Reserved

142 00000000 Reserved

150 000 A/C power fail. 0=disable A/C fail interrupt,
1=enable

151 002 Check amplifier fault. 0=disable amp fault interrupt;
1=enable; 2= enable and force to single mode.

152 001 D/A overrun. (=disable D/A overrun interrupt;
1=enable; 2 =enable and force to single mode.

160 00000000 Select + or - move for jog mode (X, Y and Z axes only)

161 00000000 Set RS-232 Time-Out time in seconds, 0 - 65,535 (0 is
default setting of 5§ minutes.)

162 00000000 Reserved

APPENDIX 4: PAGE 7

APPENDIX 4: COMMAND & PARAMETER SUMMARY

UNIDEX 16 EEPROM PARAMETERS

PARA# DEFAULT DATA PARAMETER DESCRIPTION
METRIC { ENGLISH
1.1 11

200 100000 39370 X axis (G71) metric constant (100000 * counts out/
prog. mm)

201 254000 100000 X axis (G70) english constant (100000 * counts out/
prog. inch)

202 100000 39370 Y axis (G71) metric constant

210 254000 100000 Y axis (G70) english constant

211 100000 39370 Z axis (G71) metric constant

212 254000 100000 Z axis (G70) english constant

220 100000 39370 U axis (H71) metric constant

221 254000 100000 U axis (H70) english constant

222 100000 39370 V axis (H71) metric constant

230 254000 100000 V axis (H70) english constant

231 100000 39370 W axis (H71) metric constant

232 254000 100000 W axis (H70) english constant

240 60000 Feedrate limit for X, Y and Z axis (in counts/min)

241 60000 Feedrate limit for U, V, and W axis (in counts/min)

242 11000000 Axes which exist in system (XYZUVW00)

250 00000000 Acceleration/deceleration default 1= active
(G8,G9,H8,H9,0000)

251 002 XYZ Accel/decel time mS=32.768 * parameter (range
65.5 - 8,355.8) :

252 002 UVW Accel/decel time mS=32.768 * parameter
(range 65.5 - 8,355.8)

260 11111100 Skip limit check 0=skip (XYZUVW00)

261 300 Byte size of parts program stack

262 10000110 Parts program default -

APPENDIX 4: PAGE 8

bit 7: 1=track program step; 0 =machine step
bit 2: 1 =G71 metric default; 0= G70 english
bit 1: 1=H71 metric default; 0=H70 english

APPENDIX 4 COMMAND & PARAMETER SUMMARY

UNIDEX 16 EEPROM PARAMETERS

PARA# DEFAULT DATA PARAMETER DESCRIPTION

300 00100000 Axis selected to move 1st in "back-end” mode
(XYZUVWO00)

301 1000000 Axis selected to move 2nd in "back-end” mode

302 00000100 Axis selected to move 3rd in "back-end" mode

310 00011000 Axis selected to move 4th in "back-end" mode

311 00000000 Axis selected to move Sth in "back-end" mode

312 00000000 Axis selected to move 6th in "back-end"” mode

320 00000000 Axis home direction 1=positive direction

321 00300600 Go home feedrate X axis in counts/min (range 229-
8,000,000)

322 00300000 Go home feedrate Y axis in counts/min (range 229-
8,000,000)

330 00300000 Go home feedrate Z axis in counts/min (range 229-
8,000,000)

331 00300000 Go home feedrate U axis in counts/min (range 229-
8,000,000)

332 00300000 Go home feedrate V axis in counts/min (range 229-
8,000,000)

340 00300000 Go home feedrate W axis in counts/min (range 229-
8,000,000)

341 00000000 Go home offset, X axis (in counts)

342 00000000 Go home offset, Y axis

350 00000000 Go home offset, Z axis

351 00000000 Go home offset, U axis

352 00000000 Go home offset, V axis

360 00000000 Go home offset, W axis

361 00000000 Reserved

362 00000000 Reserved

APPENDIX 4: PAGE 9

APPENDIX 4 COMMAND & PARAMETER SUMMARY

UNIDEX 16 EEPROM PARAMETERS

PARA# DEFAULT DATA PARAMETER DESCRIPTION

400 000010 M function time from data latch until strobe (MTMF)

401 000010 M function time to debounce acknowledge or strobe
length (MTFN)

402 000010 S function time from data latch until strobe (STMF)

410 000010 S function time to debounce acknowledge or strobe
length (STFN)

411 000010 T function time from data latch until strobe (TTMF)

412 000010 T function time to debounce acknowledge or strobe
length (TTFN)

420 007 Spindle type 1=Once/per/rev; 2=2’s complement;
3 =Unipolar binary; 4 =complement binary; 5 = offset
binary; 6 = bipolar complement; 7=unipolar BCD;
8 =bipolar BCD.

421 020 Spindle speed rpm up/down soft key (once/per rev).

422 09999 High gear range upper rpm limit or bi/unipolar positive
high limit.

430 00001 High gear range lower rpm limit or bi/unipolar positive
low limit.

431 09999 Low gear range upper rpm limit or bipolar negative
high limit.

432 00001 Low gear range lower rpm limit or bipolar negative low
limit.

440 0137 Once/per/rev spindle teeth gear ratio = low range *
1024.

441 003 Once/per/rev speed changer accuracy deadband.

442 002 MO0, M1, M2, M30, M47 Special M-functions user op-
tions.

450 002 M-function user options. Type 0-3 only.

451 002 S-function user options. Type 0-3 only.

452 003 T-function user options. Type 0 software function does

APPENDIX 4: PAGE 10

too! offset and radius compensation. No type 3 or 7.
Type 2, 4, no tool offset, only tool radius compensation.

460
461
462

TYPE CODE:

oo

APPENDIX 4: COMMAND & PARAMETER SUMMARY

0 = Perform any software function, output code to bus and wait for
acknowledge.

1 = Skip everything, no software function and no code output to
bus.

2 = Perform any software function, output code to bus but don't
walt for acknowladge.

3 = Perform any software function, output code to bus and timed
walt for acknowledge.

4 = Perform any software function, output no code to bus.
5 = Output code only to bus, walt forever for acknowlegde.
6 = Output code only to bus, don't walt for acknowlege.

7 = Output code only to bus, timed walt for acknowlege.
Reserved

Reserved
Reserved

APPENDIX 4: PAGE 11

APPENDIX 4: COMMAND & PARAMETER SUMMARY

UNIDEX 16 EEPROM PARAMETERS

PARA# DEFAULT DATA PARAMETER DESCRIPTION

500 0 Reserved

501 0 Reserved

502 0 Reserved

510 00300000 Feedrate threshold for automatic Accel/Decel XYZ
axes. (in counts/min)

511 00300000 Feedrate threshold for automatic Accel/Decel UVW
axes. (in counts/min)

520 00000000 Program new name for X axis. New name must consist
of two characters (upper case alphabetic) where 01 - 26
represent A - Z respectively.

521 00000000 Program new name for Y axis.

522 00000000 Program new name for Z axis.

530 00000000 Program new name for U axis.

531 00000000 Program new name for V axis.

532 00000000 Program new name for W axis.

540 00000000 Unrelated functions:
Bit 0 to 1 = Truncation of message output.
Bit 1to 1 = Port-B will not echo incoming characters.
Bit 2 to 1 = Port-A will not echo incoming characters.
Bit 3 to 1 = New axes’ names will apply to program.
Bit 4 to 1 = Execution of "Autoexecute” file.

541 00000000 Enables errors and statuses to be output through the

APPENDIX 4: PAGE 12

RS-232 ports or I/O channel to host computer.

Bit 0 set tol = Send to Port-B.

Bit 1 set to 1 = Send to Port-A.

Bit 2 set to 1 = Send MSG command to Port-B.

Bit 3 set to 1 = Send MSG command to Port-A.

Bit 4 set to 1 = Send CMD command to Port-B.

Bit 5 set to 1 = Send CMD command to Port-A.

Bit 6 = 1, input from port is Binary. Bit6 = 0, ASCIL
Bit 7 set to 1 = Error code in Hex sent to 1/O address
$700

APPENDIX 4. COMMAND & PARAMETER SUMMARY

UNIDEX 16 EEPROM PARAMETERS

PARA# DEFAULT DATA PARAMETER DESCRIPTION

542 00000000 Specifies the Service Request character expected after
the CMDS command.

550 00000000 Designates the password that will be required to enter
the edit mode (0 = no password).

551 100000000 Designates the password that will be required to enter
the file mode.

552 00000000 Designates the password that will be required to enter
the machine mode.

560 00000000 Designates the password that will be required to enter
the parameter mode.

561 00000000 Designates the password that will be required to enter
the test mode.

562 00000000 Designates the password that will be required torun a

command file.

APPENDIX 4: PAGE 13

