Published Articles
Published Articles
Advancing Implantable Medical Device Reliability with Enhanced Laser Joining Technology
Travis Schneider
Business Development Manager
In the realm of high-performance, Class III implantable medical devices, laser joining is the gold standard for assembly. This technology enables the production of many medical innovations, from passive devices like guidewire assemblies to sophisticated active products such as cardiac rhythm modulation (CRM) devices and brain-computer interfaces (BCIs). Manufacturers need to know – with certainty – that device components will maintain their integrity once deployed within a patient. Laser joining addresses this critical need by offering a non-contact, particulate-free joining method, high-strength bonds formed at rapid speeds, and exceptional precision and controllability.
Harnessing laser joining’s full potential hinges on precise process control. The location and amount of thermal energy the laser applies to the materials to form a high-integrity bond is instrumental in ensuring consistent, reproducible joints with minimal heat-affected zones. By pairing advanced controller features such as spatial domain laser pulse control with superior electromechanics, device manufacturers can achieve unprecedented levels of part reproducibility in their assembly processes. These control features enhance joining processes to pave the way for increasingly complex and miniaturized implantable devices, ultimately leading to better patient outcomes and expanded treatment options.